首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme UDP-N-acetylglucosamine: dolichyl phosphate, N-acetylglucosamine-1-phosphate transferase initiates the synthesis of the oligosaccharide chain of complex-type glycoproteins. In view of the high content of glycoprotein in peripheral nerve myelin, the properties of this enzyme, its changes with age, and the effect of the specific inhibitor tunicamycin were investigated. The enzyme activity in rat peripheral nerve homogenate was completely dependent on the presence of exogenous dolichyl phosphate as well as Mg2+ and a detergent (Triton X-100) and was also greatly stimulated by a high salt concentration (0.4 M KCl) and AMP. The highest specific activity was present in the postmitochondrial membranes. The specific activity in postmitochondrial membranes in the presence of exogenous dolichyl phosphate reached a maximum at 17 days and remained relatively high throughout development, up to 2 years of age, but the activity was much lower when dolichyl phosphate was not added. This indicates that the enzyme level does not decrease with age, but that the content of the lipid cofactor may limit glycoprotein synthesis in vivo. Tunicamycin (5 micrograms) was injected intraneurally into 24-day-old rat sciatic nerve, and the enzyme was assayed from 1 to 24 days after injection. The specific activity of the transferase remained at low levels (5-40% of the level in control nerve) in most injected nerves assayed throughout this postinjection period. A protein previously identified as the unglycosylated P0 protein was synthesized in vitro by the tunicamycin-injected nerve and could be demonstrated to be incorporated into myelin in large amounts at 2 days and in small amounts at 6 days after injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract: The rat optic nerve and tract (representing a relatively homogeneous part of the CNS) were utilised for a detailed examination of the protein and glycoprotein composition of developing myelin membranes. Animals aged from 5 days through to adulthood were used. Myelin fractions could first be isolated from the nerve 8 days after birth and the yield increased until 60 days of age, before declining slightly to the adult level; a similar (but possibly slightly delayed) pattern was apparent for the optic tract. The homogeneity of optic nerve myelin (compared with that from brain and spinal cord) was demonstrated by zonal centrifugation on continuous sucrose-density gradients; myelin from both 20-day and adult animals exhibited narrow, Gaussian-like distributions, with 19–22% of the total myelin at the population modes. During development, the myelin density profile was shifted to a denser region of the sucrose gradients. Micro-polyacrylamide gel electrophoretic analyses of "light" and "heavy" myelin subfractions from both optic nerve and tract indicated that the gross developmental changes in protein composition were similar to those previously described for myelin prepared from larger CNS areas, particularly the forebrain. The glycoprotein components of the myelin fractions were stained directly on micro-gels using fluorescein isothiocyanate-labelled concanavalin A. The relative proportion of the major high-molecular-weight glycoprotein decreased rapidly during the early phases of myelination. A number of lower-molecular-weight glycoproteins were also apparent; the proportions of these varied during development and in light and heavy myelin subfractions, but definitive data are not available to determine whether they are components of the myelin sheath or of contaminating membranes.  相似文献   

3.
We recently characterized two developmentally regulated myelin-associated glycoprotein (MAG) polypeptides synthesized by mouse brain mRNA in vitro. We now extended these studies to include the peripheral nervous system (PNS). Total cytoplasmic RNA was isolated from the sciatic nerves of 7-, 12-, and 17-day-old and adult rats and translated in vitro in a rabbit reticulocyte lysate system. In contrast to results in the CNS, it appears that only one MAG polypeptide, p67MAG, is synthesized by PNS mRNA at all ages. The implications of these findings are discussed with respect to recent observations concerning both the localization of MAG and the synthesis of MAG in the PNS of dysmyelinating mutant mice.  相似文献   

4.
Radioiodinated lectins were used to detect glycoproteins of peripheral nervous system (PNS) myelin (rat, human, bovine) and cultured rat Schwann cells. Proteins were resolved by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and transferred to nitrocellulose filters. The filters were overlaid with radioiodinated lectins of known saccharide affinities. These included concanavalin A, Helix pomatia, Limulus polyphemus, Maclura pomifera, peanut, soybean, Ulex europaeus, and wheat germ agglutinins. Inclusion of the appropriate monosaccharide in the overlay solution (0.2 M) inhibited lectin binding to the nitrocellulose-fixed proteins. Fluorography permitted identification of 26 myelin glycoproteins and many more in Schwann cells. All lectins labeled a band present in myelin, but not Schwann cells, corresponding to the major PNS myelin protein, P0. Our attention focused on a high-molecular-weight myelin glycoprotein [apparent molecular weight (Mr) 170,000], which appeared abundant by Coomassie Blue staining and which was heavily labeled by all lectins except concanavalin A. A protein with approximately this Mr and lectin-binding pattern was present in human and bovine PNS myelin as well, but not detected in rat Schwann cells, CNS myelin, liver and fibroblast homogenates, or cultured bovine oligodendroglia. Hence this 170,000 Mr glycoprotein is apparently unique to PNS myelin.  相似文献   

5.
Peripheral nervous system myelin contains as the major structural protein a glycoprotein known as P0. Another glycoprotein present in smaller amounts, known as the 19K or X protein, has been previously identified as derived from P0 and identical with the main tryptic degradation product of P0 (TP0). Although both P0 and 19K protein incorporated fucose in vitro and stained on polyacrylamide gels with the periodic acid-Schiff stain for carbohydrate, only the P0 blotted to nitrocellulose paper showed immunoreactivity to an antibody to P0, whereas the 19K protein did not. Furthermore, when P0 was hydrolyzed with trypsin or elastase, the main degradation products reacted with P0 on immunoblots, whereas the 19K protein showed no immunoreactivity. From these studies and those of others, it may be concluded that the 19K protein shows some similarities to TP0, but probably has a different structure. P0 and 19K protein do not appear to be related as shown by lack of cross-immunoreactivity.  相似文献   

6.
Age-related changes in amounts of myelin proteins from rat sciatic nerve or spinal root were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). In the aged peripheral nerve myelin, the relative amounts of band 105K and proteins X and Y increased, whereas those of proteins P0 and P1 and band 190K decreased. Band 105K purified by preparative SDS-PAGE exhibited three bands of 105K, 28K, and 21K at the second electrophoresis. A repeated SDS-PAGE did not improve the purity of bank 105K, but increased the ratio of 21K to 28K. Compared with P0 protein, band 105K has a very similar peptide map pattern and amino acid composition, as well as the identical NH2 terminal residue, isoleucine. These findings suggest that band 105K is an aggregate form of P0 protein and its fragment, 21K. The 21K protein is a distinct entity from X protein. The quantitative and qualitative alterations in myelin proteins, as we report here, may reflect continuing demyelination and remyelination in aged peripheral nerves.  相似文献   

7.
P2 protein, a myelin-specific protein, was detected immunocytochemically and biochemically in rabbit central nervous system (CNS) myelin. P2 protein was synthesized by rabbit oligodendrocytes and was present in varying amounts throughout the rabbit CNS. Comparison of P2 and myelin basic protein (MBP) stained sections revealed that P2 antiserum did not stain all myelin sheaths within the rabbit CNS. The proportion of myelin sheaths stained by P2 antiserum and the amount of P2 detected biochemically were greater in more caudal regions of the rabbit CNS. The highest concentration of P2 protein was found in rabbit spinal cord myelin, where P2 antiserum stained the majority of myelin sheaths. P2 protein was barely detectable biochemically in myelin isolated from frontal cortex, and in sections of frontal cortex only occasional myelin sheaths reacted with P2 antiserum. These results suggest the the regional variations in the amount of P2 protein are dut to regional differences in the number of myelin sheaths that contain P2 protein. P2 protein was detected immunocytochemically and biochemically in rabbit sciatic nerve myelin. Immunocytochemically, P2 antiserum only stained a portion of the myelin sheaths present. The myelin sheaths not reacting with P2 antiserum had small diameters and represented less than 10% of the total myelinated fibers.  相似文献   

8.
Protein compositions were determined for sciatic nerve myelin isolated from young and adult control and quaking (Qk) mice. Age-related changes in the relative amounts of large (Pl) and small (Pr) basic proteins were found. In control animals, the ratio Pr/Pl increased with age, a change similar to that observed for the large (Bl) and small (Bs) CNS myelin basic proteins of adult mice. Pr/Pl also increased with age in the Qk mouse sciatic nerve, but only to the point that the value in the adult Qk mouse was similar to that observed for young control animals, a situation reminiscent of the effect of the Qk mutation on CNS basic proteins. Thus, our data suggest that the Qk mutation has a similar effect on peripheral nervous system (PNS) and CNS basic proteins. Our findings are consistent with recent electrophoretic and immunochemical data showing that PNS and CNS myelin basic proteins in rodents are analogous, and they suggest that the genetic program controlling basic protein expression is common to oligodendroglia and Schwann cells.  相似文献   

9.
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

10.
A recently described 170,000-Mr glycoprotein, specific to peripheral nervous system (PNS) myelin, was purified from rat PNS myelin by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and used to immunize guinea pigs and rabbits. The resultant antisera proved specific for 170,000-Mr glycoprotein by enzyme-linked immunosorbent assay, by immunoprecipitation of the appropriate peptide from solubilized PNS myelin, and by immunoblot analysis of rat PNS myelin. The anti-rat 170,000-Mr glycoprotein antisera cross-reacted with proteins of similar molecular weight in human and bovine PNS myelin, but such proteins were not detected in human or rat CNS myelin or other rat tissues. The 170,000-Mr glycoprotein was also detected by this immunoblot procedure in recently isolated rat Schwann cells but not in those kept in culture for greater than or equal to 3 days. By indirect immunofluorescent microscopy, anti-rat 170,000-Mr glycoprotein antibody bound to rat PNS myelin sheaths but not to other rat tissues. Together, these studies indicate the 170,000-Mr glycoprotein is specific to PNS myelin of several species and that a neuronal influence may be required for its expression by Schwann cells.  相似文献   

11.
12.
Abstract: Myelin proteins and the total Wolfgram protein fraction were isolated from the CNS of several mammalian species and characterized with rabbit anti-bovine 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) antisera after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose membranes. The corresponding CNP proteins cross-reacted across all species examined, suggesting that the CNP amino acid sequence was fairly well conserved in all six species. The same corresponding proteins were also identified immunochemically in the crude total Wolfgram protein fraction in the region of the W1 myelin protein, thus further supporting and extending two different previous reports indicating a relationship between CNP and the W1 protein. In addition to these CNS enzyme sources, peripheral nervous system CNP (rabbit and rat sciatic nerve) was also recognized by these same rabbit anti-bovine (CNS) CNP antisera. CNP was also detected in freshly isolated delipidated bovine oligodendrocyte membranes. These results suggest that rabbit anti-bovine CNP antisera may be of use in localization and structural studies of this enzyme in several different species and will permit clear identification of CNP in oligodendrocytes and their isolated membrane fractions.  相似文献   

13.
Activated macrophages secrete a variety of neutral proteinases, including plasminogen activator. Since macrophages are implicated in primary demyelination in the peripheral nervous system (PNS) in Guillain-Barré syndrome and experimental allergic neuritis, we have investigated the ability of plasmin and of conditioned media from cultured macrophages, in the presence of plasminogen, to degrade the proteins in bovine and rat PNS myelin. The results indicate that (a) the major glycoprotein P0 and the basic P1 and Pr proteins in PNS myelin are extremely sensitive to plasmin, perhaps more so than is the basic protein in CNS myelin; (b) the initial product of degradation of P0 by plasmin has a molecular weight higher than that of the "X" protein; (c) large degradation products of P0 are relatively insensitive to further degradation; and (d) the neuritogenic P2 protein in PNS myelin is quite resistant to the action of plasmin. Results similar to those with plasmin were obtained with conditioned media from macrophages and macrophage-like cell lines together with plasminogen activator, and the degradation of the PNS myelin proteins, Po and P1, under these conditions was inhibited by p-nitrophenylguanidinobenzoate, an inhibitor of plasmin and plasminogen activator. The results suggest that the macrophage plasminogen activator could participate in inflammatory demyelination in the PNS.  相似文献   

14.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

15.
Solid-Phase Immunoassay of PO Glycoprotein of Peripheral Nerve Myelin   总被引:4,自引:2,他引:4  
To explore the immunological properties of PO protein, antibodies were elicited in rabbits against the purified chick PO protein. Peripheral nervous system protein was fractionated on sodium dodecyl sulfate-polyacrylamide slab gels and then transferred electrophoretically ("blotted") onto nitrocellulose sheets. The PO protein was detected by its capacity to bind its specific antibody present in the rabbit serum. The PO-specific antibody complex was then exposed to goat anti-rabbit immunoglobulin G (IgG) coupled to peroxidase or labeled with 125I. The resulting PO antigen-antibody "sandwich" was visualized and quantitated by densitometry of the colored peroxidase reaction product or by autoradiography and gamma-radiation counting of the 125I-IgG complex. The methods permitted quantitation of the PO protein in various nerve extracts. The limit of detection of the PO antigen was about 1 ng of protein. The antibody was specific for the PO glycoprotein in the peripheral nerve extracts. The PO proteins from various species, including human, were also detected by the antibody to chick PO protein. Preliminary experiments indicate the solid-phase immunoassay is a useful method for monitoring PO protein levels in small quantities of tissue extracts under various physiological and pathological conditions.  相似文献   

16.
The myelin-associated glycoprotein (MAG) was quantitated in the CNS and PNS of quaking mice and the levels compared to the levels of myelin basic protein (MBP) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity. In the brainstems of 36-day-old quaking mice, MBP, MAG, and CNPase were reduced to 12, 16, and 29% of control levels, respectively. In the sciatic nerves of the 36-day-old quaking mice, MBP and CNPase were 38 and 75% of control levels, respectively, whereas the concentration of MAG was unchanged or slightly increased. Similar quantitative results were obtained for the sciatic nerves and spinal roots of 7-month-old quaking mice. Immunoblots showed that the principal MAG band from the brainstems, sciatic nerves, and spinal roots of the quaking mice had a higher than normal apparent Mr. In addition, there was a minor component reacting with anti-MAG antiserum in the brainstems of the quaking mice that had a slightly lower Mr than control MAG and was not detected in the normal mice. The results for the quaking mice are compared with those from similar studies on other mutants with dysmyelination of the CNS and PNS.  相似文献   

17.
Incubation of bovine CNS myelin with phospholipase C from Bacillus cereus under conditions that lead to extensive phospholipid degradation caused 10% of the myelin protein to be released from the membrane. The myelin basic protein (MBP) was a major component of the dissolved protein. Comparable incubations with phospholipase C from Clostridium perfringens, phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, or cabbage phospholipase D removed little MBP. However, concentrations of sodium chloride near 1 M and concentrations of divalent metal ions between 50 and 600 mM released typically 9-12% of the total myelin protein, with MBP again as the predominant component. Repetitive washing with calcium chloride solutions resulted in dissolution of over 90% of the MBP. When myelin was incubated in 1.0 M sodium chloride or 25 mM calcium chloride, the MBP was cleaved largely into two major peptides with apparent molecular weights near 14,000 and 12,000, but with 200 mM or higher concentrations of calcium chloride most of this protein remained intact. With appropriate manipulation of the ionic milieu, it is thus possible to remove most of this extrinsic protein from the myelin surface under relatively mild conditions. The conditions that release the protein suggest that it is held at the membrane surface by ionic interactions.  相似文献   

18.
Monoclonal antibodies against P0, myelin basic protein, or myelin-associated glycoprotein were generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with central and peripheral nervous system myelin proteins. The antibodies secreted were either IgG, IgM, or IgA. Clone C6B5 (iso-type IgM) secreted antibody(ies) that bound to both myelin basic protein and myelin-associated glycoprotein, although binding of antibody to myelin basic protein as detected by the immunoblot technique appeared to be much less than to the myelin-associated glycoprotein. Antibodies were characterized in solid-phase radioimmunoassay for their species cross-reaction, and histologically for the specificity of binding to myelin in central and peripheral nervous system tissues. These monoclonal reagents should prove valuable in studying CSF and myelin-producing cells, since in both cases the concentration of myelin proteins is low.  相似文献   

19.
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 Å. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.  相似文献   

20.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号