首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Repair of idarubicin-induced DNA damage: A cause of resistance?   总被引:1,自引:0,他引:1  
Dartsch DC  Gieseler F 《DNA Repair》2007,6(11):1618-1628
Idarubicin, a widely used anticancer drug inhibits topoisomerase (topo) IIalpha and induces DNA double strand breaks. The finding that idarubicin-induced DNA damage is repaired before cell death is initiated encouraged us to examine the role of DNA repair for the cytotoxicity of idarubicin in human promyelocytic HL60 leukaemia cells. We found that DNA double strand breaks induced by a 90 min transient exposure to 0.5 microgml(-1) idarubicin were rapidly repaired throughout the whole population, while topo IIalpha itself was degraded. In spite of DNA repair, the vast majority of cells died within 40 h. Using differential staining of the chromatids and microscopic evaluation of DNA break points, we found evidence for a high number of false ligations of loose DNA strands arising from the inhibition of topo IIalpha action by idarubicin. If mainly actively transcribed genes are affected, this results in a disruption of vital genetic information, of regulatory sequences and, ultimately, in induction of the cell death pathway. Our results confirm the hypothesis that misrepair of DNA damage is a decisive event in idarubicin-induced cell death. They are discussed in the context of topo IIalpha-function and the currently known mechanisms of DNA double strand break repair.  相似文献   

3.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 microU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.  相似文献   

4.
Among the many types of plant stressors, pathogen attack, mainly fungi and bacteria can cause particularly severe damage both to individual plants and, on a wider scale, to agricultural productivity. The magnitude of these pathogen-induced problems has stimulated rapid progress in green biotechnology research into plant defense mechanisms. Plants can develop local and systemic wide-spectrum resistance induced by their exposure to virulent (systemic acquired resistance—SAR) or non-pathogenic microbes and various chemical elicitors (induced systemic resistance—ISR). β-Aminobutyric acid (BABA), non-protein amino acid, is though to be important component of the signaling pathway regulating ISR response in plants. After treatment with BABA or various chemicals, after infection by a necrotizing pathogen, colonization of the roots by beneficial microbes many plants establish a unique physiological state that is called the “primed” state of the plant. This review will focus on the recent knowledge about the role of BABA in the induction of ISR against pathogens mainly against fungi.  相似文献   

5.
Can better prescribing turn the tide of resistance?   总被引:2,自引:0,他引:2  
  相似文献   

6.
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.  相似文献   

7.
8.
Plants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae. Soybean senses a specific molecular pattern consisting of a branched heptaglucoside that is present in the oomycetal cell walls. Recognition of this elicitor may be achieved through a β-glucan-binding protein, which forms part of a proposed receptor complex. Subsequently, soybean mounts a complex defense response, which includes the increase of the cytosolic calcium concentration, the production of reactive oxygen species, and the activation of genes responsible for the synthesis of phytoalexins. We now report the identification of two mitogen-activated protein kinases (MAPKs) and one MAPK kinase (MAPKK) that may function as signaling elements in triggering the resistance response. The use of specific antisera enabled the identification of GmMPKs 3 and 6 whose activity is enhanced within the signaling pathway leading to defense reactions. Elicitor specificity of MAPK activation as well as the sensitivity against inhibitors suggested these kinases as part of the β-glucan signal transduction pathway. An upstream GmMKK1 was identified based on sequence similarity to other plant MAPKKs and its interaction with the MAPKs was analyzed. Recombinant GmMKK1 interacted predominantly with GmMPK6, with concomitant phosphorylation of the MAPK protein. Moreover, a preferential physical interaction between GmMKK1 and GmMPK6 was demonstrated in yeast. These results suggest a role of a MAPK cascade in mediating β-glucan signal transduction in soybean, similar to other triggers that activate MAPKs during innate immune responses in plants. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. The nucleotide sequences encoding the MAPKs and MAPKK1 from soybean can be accessed through the GenBank database under GenBank accession numbers AF104247, AF329506, and AY070230.  相似文献   

9.
《Life sciences》1993,52(16):PL135-PL139
β-Adrenoceptors are present on vascular smooth muscle and on endothelium. We investigated whether the endothelial β-adrenoceptors induce relaxation of rat mesentric resistance arteries by stimulation of endothelium-derived relaxing factor (EDRF) release. To this end, the relaxation was studied in the presence and absence of 100 μM NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of the production of EDRF. The maximal relaxation with isoprenaline, expressed as a percentage of the precontraction, was 44.0 ± 4.0 % (n = 12) in the L-NMMA treated group and 58.0 ± 2.6 % (n = 13) in the untreated group, a statistically significant difference (P = 0.008). However, the precontraction with 40 mM K+ tended to be higher in the presence of L-NMMA. The pD2-value for isoprenaline was not significantly changed by the L-NMMA treatment. We conclude that the isoprenaline-mediated relaxation of mesenteric resistance arteries in inhibited by L-NMMA, bu that this effect can at least in part be ascribed to an inhibition of baseline EDRF-release.  相似文献   

10.
Disease is one of the main driving forces of biological evolution. Parasites cause natural selection for disease resistance in populations of their hosts. Why then are all organisms susceptible to some parasites? One explanation is that resistance to disease is costly, reducing the fitness of the host in the absence of disease. A recent article shows that such costs might have helped to maintain polymorphism at a resistance locus. Other work, however, has questioned whether the costs of resistance are indeed necessary to account for polymorphism in host–parasite interactions.  相似文献   

11.
Bacterial resistance to antibiotics continues to pose a serious threat to human and animal health. Given the considerable spatial and temporal heterogeneity in the distribution of resistance and the factors that affect its evolution, dissemination and persistence, we argue that antibiotic resistance must be viewed as an ecological problem. A fundamental difficulty in assessing the causal relationship between antibiotic use and resistance is the confounding influence of geography: the co-localization of resistant bacterial species with antibiotic use does not necessarily imply causation and could represent the presence of environmental conditions and factors that have independently contributed to the occurrence of resistance. Here, we show how landscape ecology, which links the biotic and abiotic factors of an ecosystem, might help to untangle the complexity of antibiotic resistance and improve the interpretation of ecological studies.  相似文献   

12.
ABSTRACT: Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. RESULTS: At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014 F kdr mutation increased throughout the three years and by 2010, the frequency of 1014 F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014 S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003) and in 2010 the 1014 S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12%) were observed in Soumousso in 2009 and the difference between sites is significant for each year. CONCLUSION: Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and between rounds of testing, and hence it is important that resistance monitoring is carried out on more than one occasion before decisions on insecticide procurement for vector control are made. The presence of 1014 S in An. gambiae s.l., in addition to 1014 F, is not unexpected given the recent report of 1014 S in Benin but highlights the importance of monitoring for both mutations throughout the continent. Future research must now focus on the impact that this resistance is having on malaria control in Burkina Faso.  相似文献   

13.
Both α-amylase inhibitor-2 (αAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1–5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both αAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing αAI-2 accumulated high levels of this protein in seeds. The expression of αAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive α-amylase. However, although the seed content of αAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that αAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, αAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of αAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes.  相似文献   

14.
Summary The growth of adherent Baby Hamster Kidney cells (BHK 21) on surfaces coated with different substances (FCS, Con. A, PHA, cholesterol, collagen) was investigated. A positive influence on cell viability could only be observed when using a fetal calf serum (FCS) coat. To evaluate the effects of coating on shear stress sensitivity, experiments in a home made flow chamber were carried out. For comparison further investigations were conducted for several serum concentrations in the medium. The results demonstrate that the latter had a more beneficial effect on shear stress resistance than coating.  相似文献   

15.
A framework linkage map was developed using 284 F10 recombinant inbred lines (RILs) from a ’Lemont’×’Teqing’ rice cultivar cross. Evaluation of a subset of 245 of these RILs with five races of the rice blast pathogen permitted RFLP mapping of three major resistance genes from Teqing and one major gene from Lemont. All mapped genes were found to confer resistance to at least two blast races, but none conferred resistance to all five races evaluated. RFLP mapping showed that the three resistance genes from Teqing, designated Pi-tq5, Pi-tq1 and Pi-tq6, were present on chromosomes 2, 6 and 12, respectively. The resistance gene from Lemont, Pi-lm2, was located on chromosome 11. Pi-tq1 is considered a new gene, based on its reaction to these five races and its unique map location, while the other three genes may be allelic with previously reported genes. Lines with different gene combinations were evaluated for disease reaction in field plots. Some gene combinations showed both direct effects and non-linear interaction. The fact that some of the lines without any of the four tagged genes exhibited useful levels of resistance in the field plots suggests the presence of additional genes or QTLs affecting the blast reaction segregating in this population. Received: 16 December 1999 / Accepted: 28 February 2000  相似文献   

16.
Zymomonas mobilis, a Gram-negative ethanologenic non-pathogenic bacterium, is reported to exhibit resistance to high concentrations of β-lactam antibiotics. In the present study, Z. mobilis was found to be resistant to I-IV generations of cephalosporins and carbapenems, i.e. narrow, broad and extended spectrum β-lactam antibiotics. We have analysed the genome of Z. mobilis (GenBank accession No.: NC 006526) harbouring multiple genes coding for β-lactamases (BLA), β-lactamase domain containing proteins (BDP) and penicillin binding proteins (PBP). The conserved domain database analysis of BDPs predicted them to be members of metallo β-lactamase superfamily. Further, class C specific multidomain AmpC (β-lactamase C) was found in the three β-lactamases. The β-lactam resistance determinants motifs, HXHXD, KXG, SXXK, SXN, and YXN are present in the BLAs, BDPs and PBPs of Z. mobilis. The predicted theoretical pI and aliphatic index values suggested their stability. One of the PBPs, PBP2, was predicted to share functional association with rod shape determining proteins (GenBank accession Nos. YP_162095 and YP_162091). Homology modelling of three dimensional structures of the β-lactam resistance determinants and further docking studies with penicillin and other β-lactam antibiotics indicated their substrate-specificity. Semi-quantitative PCR analysis indicated that the expression of all BLAs and one BDP are induced by penicillin. Disk diffusion assay, SDS-PAGE and zymogram analysis confirms the substrate specificity of the β-lactam resistance determinants. This study gives a broader picture of the β-lactam resistance determinants of a non-pathogenic ethanologenic Z. mobilis bacterium that could have implications in laboratories since it is routinely used in many research laboratories in the world for ethanol, fructooligosaccharides, levan production and has also been reported to be present in wine and beer as a spoilage organism.  相似文献   

17.
Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in Western societies, affecting one in four adults in the USA, and is strongly associated with hepatic insulin resistance, a major risk factor in the pathogenesis of type 2 diabetes. Although the cellular mechanisms underlying this relationship are unknown, hepatic accumulation of diacylglycerol (DAG) in both animals and humans has been linked to hepatic insulin resistance. In this Perspective, we discuss the role of DAG activation of protein kinase Cε as the mechanism responsible for NAFLD-associated hepatic insulin resistance seen in obesity, type 2 diabetes, and lipodystrophy.  相似文献   

18.
19.
《Gene》1996,179(1):157-162
The chloramphenicol (Cm)-inducible cat and cmlA genes are regulated by translation attenuation, a regulatory device that modulates mRNA translation. In this form of gene regulation, translation of the CmR coding sequence is prevented by mRNA secondary structure that sequesters its ribosome-binding site (RBS). A translated leader of nine codons precedes the secondary structure, and induction results when a ribosome becomes stalled at a specific site in the leader. Here we demonstrate that the site of ribosome stalling in the leader is selected by a cis effect of the nascent leader peptide on its translating ribosome.  相似文献   

20.
While insecticides have greatly improved human health and agricultural production worldwide, their utility has been limited by the evolution of resistance in many major pests, including some that became pests only as a result of insecticide use. Insecticide resistance is both an interesting example of the adaptability of insect pests, and, in the design of resistance management programmes, a useful application of evolutionary biology. Pest susceptibility is a valuable natural resource that has been squandered; at the same time, it is becoming increasingly expensive to develop new insecticides. Pest control tactics should therefore take account of the possibility of resistance evolution. One of the best ways to retard resistance evolution is to use insecticides only when control by natural enemies fails to limit economic damage. This review summarizes the recent literature on insecticide resistance as an example of adaptation, and demonstrates how population genetics and ecology can be used to manage the resistance problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号