首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several shorter analogues of the cell penetrating peptide, transportan, have been synthesized in order to define the regions of the sequence, which are responsible for the membrane translocation property of the peptide. Penetration of the peptides into Bowes melanoma cells and the influence on GTPase activity in Rin m5F cellular membranes have been tested. The experimental data on cell penetration have been compared with molecular modeling of insertion of peptides into biological membranes. Omission of six amino acids from the N-terminus did not significantly impair the cell penetration of the peptide while deletions at the C-terminus or in the middle of the transportan sequence decreased or abolished the cellular uptake. Most transportan analogues exert an inhibitory effect on GTPase activity. Molecular modeling shows that insertion of the transportan analogues into the membrane differs for different peptides. Probably the length of the peptide as well as the location of aromatic and positively charged residues have major impact on the orientation of peptides in the membranes and thereby influence the cellular penetration. In summary, we have designed and characterized several novel short transportan analogues with similar cellular translocation properties to the parent peptide, but with reduced undesired cellular activity.  相似文献   

2.
Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5-320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner (p<0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.  相似文献   

3.
《Peptides》2012,33(12):2444-2451
Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5–320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner (p < 0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.  相似文献   

4.
Internalisation of cell-penetrating peptides into tobacco protoplasts   总被引:1,自引:0,他引:1  
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.  相似文献   

5.
Application of cell-penetrating peptides for delivering various hydrophilic macromolecules with biological function into cells has gained much attention in recent years. We compared the protein transduction efficiency of four cell-penetrating peptides: penetratin, Tat peptide, transportan, and pVEC and studied the effects of various medium parameters on the uptake. Depletion of cellular energy and lowering of temperature strongly impaired the internalization of protein complexed with cell-penetrating peptides, confirming the endocytotic mechanism of peptide-mediated protein cellular transduction. Peptide-induced protein association with HeLa cells decreased 3-6-fold in energy-depleted cells. Inhibition of clathrin-dependent endocytosis by the hyperosmolar medium decreased the uptake of peptide-avidin complexes 1.5-3-fold and the removal of cholesterol from the plasma membrane 1.2-2-fold, suggesting that both clathrin-dependent and independent endocytosis were involved in peptide-induced cellular delivery of avidin. However, even under conditions of cellular energy depletion, ceasing of cellular traffic, and partial depolarization of plasma membrane, peptide-protein complexes associated with HeLa cells, as observed by FACS analysis and spectrofluorimetry. Among the studied peptides, pTat and transportan revealed higher protein transduction efficiency than penetratin or pVEC.  相似文献   

6.
Internalization of fluorescently labeled CPPs, pVEC, transportan and scrambled pVEC, in a range of plant cells was investigated. Cellular uptake of the peptides was found to be tissue dependent. pVEC and transportan were distinctly internalized in triticale mesophyll protoplasts, onion epidermal cells, leaf bases and root tips of seven-day old triticale seedlings but showed negligible florescence in coleoptile and leaf tips as observed under a fluorescence microscope. Further, pVEC and transportan uptake studies were focused on mesophyll protoplasts as a system of investigation. In fluorimetric studies transportan showed 2.3 times higher cellular internalization than pVEC in protoplasts, whereas scrambled pVEC failed to show any significant fluorescence. Effect of various factors on cellular internalization of pVEC and transportan in protoplasts was also investigated. The cellular uptake of both the peptides was concentration dependent and nonsaturable. The cellular uptake of pVEC and transportan was enhanced at low temperature (4 degrees C). The presence of endocytic/macropinocytosis inhibitors did not reduce the cellular uptake of the peptides, suggesting direct cell penetration, receptor-independent internalization of pVEC and transportan into the plant cells.  相似文献   

7.
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.  相似文献   

8.
9.
10.
11.
Cell-penetrating peptides (CPPs) are able to translocate and carry cargo molecules across cell membranes. Using fluorescence techniques (polarization and quenching) and CD spectroscopy we studied the interaction, conformation and topology of two such peptides, transportan and 'penetratin' (pAntp), and two variants of differing translocating abilities, with small phospholipid vesicles of varying charge density. The induced structure of transportan is always helical independent of vesicle surface charge. pAntp and its two variants interact significantly only with negatively charged vesicles. The induced secondary structure depends on membrane charge and lipid/peptide ratio. The degree of membrane perturbation, evidenced by fluorescence polarization, of pAntp and its variants is related to their secondary structure. In the helical state, the peptides have little effect on the membrane. Under conditions where pAntp and its variants are converted into beta-structures, they cause membrane perturbation. Oriented CD suggests that the two CPPs (pAntp and transportan) in their helical state lie along the vesicle surface, while the two pAntp variants appear to penetrate deeper into the membrane.  相似文献   

12.
Certain short peptides, which are able to translocate across cell membranes with a low lytic activity, can be useful as carriers (vectors) for hydrophilic molecules. We have studied three such cell penetrating peptides: pAntp ('penetratin'), pIsl and transportan. pAntp and pIsl originate from the third helix of homeodomain proteins (Antennapedia and Isl-1, respectively). Transportan is a synthetic chimera (galanin and mastoparan). The peptides in the presence of various phospholipid vesicles (neutral and charged) and SDS micelles have been characterized by spectroscopic methods (fluorescence, EPR and CD). The dynamics of pAntp were monitored using an N-terminal spin label. In aqueous solution, the CD spectra of the three peptides show secondary structures dominated by random coil. With phospholipid vesicles, neutral as well as negatively charged, transportan gives up to 60% alpha-helix. pAntp and pIsl bind significantly only to negatively charged vesicles with an induction of around 60% beta-sheet-like secondary structure. With all three peptides, SDS micelles stabilize a high degree of alpha-helical structure. We conclude that the exact nature of any secondary structure induced by the membrane model systems is not directly correlated with the common transport property of these translocating peptides.  相似文献   

13.
Cell-penetrating peptides (CPPs) constitute a new class of delivery vectors with high pharmaceutical potential. However, the abilities of these peptides to translocate through cell membranes can be accompanied by toxic effects resulting from membrane perturbation at higher peptide concentrations. Therefore, we investigated membrane toxicity of five peptides with well-documented cell-penetrating properties, pAntp(43-58), pTAT(48-60), pVEC(615-632), model amphipathic peptide (MAP), and transportan 10, on two human cancer cell lines, K562 (erythroleukemia) and MDA-MB-231 (breast cancer), as well as on immortalized aortic endothelial cells. We studied the effects of these five peptides on the leakage of lactate dehydrogenase and on the fluorescence of plasma membrane potentiometric dye bis-oxonol. In all cell lines, pAntp(43-58), pTAT(48-60), and pVEC(615-632) induced either no leakage or low leakage of lactate dehydrogenase, accompanied by modest changes in bis-oxonol fluorescence. MAP and transportan 10 caused significant leakage; in K562 and MDA-MB-231 cells, 40% of total lactate dehydrogenase leaked out during 10 min exposure to 10 microM of transportan 10 and MAP, accompanied by a significant increase in bis-oxonol fluorescence. However, none of the CPPs tested had a hemolytic effect on bovine erythrocytes comparable to mastoparan 7. The toxicity profiles presented in the current study are of importance when selecting CPPs for different applications.  相似文献   

14.
The therapeutic application of siRNA shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. In this study, we have investigated whether siRNA-mediated knockdown of p38 MAP kinase mRNA in mouse lung is influenced by conjugation to the nonviral delivery vector cholesterol and the cell penetrating peptides (CPP) TAT(48-60) and penetratin. Initial studies in the mouse fibroblast L929 cell line showed that siRNA conjugated to cholesterol, TAT(48-60), and penetratin, but not siRNA alone, achieved a limited reduction of p38 MAP kinase mRNA expression. Intratracheal administration of siRNA resulted in localization within macrophages and scattered epithelial cells and produced a 30-45% knockdown of p38 MAP kinase mRNA at 6 h. As with increasing doses of siRNA, conjugation to cholesterol improved upon the duration but not the magnitude of mRNA knockdown, while penetratin and TAT(48-60) had no effect. Importantly, administration of the penetratin or TAT(48-60) peptides alone caused significant reduction in p38 MAP kinase mRNA expression, while the penetratin-siRNA conjugate activated the innate immune response. Overall, these studies suggest that conjugation to cholesterol may extend but not increase siRNA-mediated p38 MAP kinase mRNA knockdown in the lung. Furthermore, the use of CPP may be limited due to as yet uncharacterized effects upon gene expression and a potential for immune activation.  相似文献   

15.
Although cell-penetrating peptides (CPPs), also denoted protein transduction domains (PTDs), have been widely used for intracellular delivery of large and hydrophilic molecules, the mechanism of uptake is still poorly understood. In a recent live cell study of the uptake of penetratin and tryptophan-containing analogues of Tat(48-60) and oligoarginine, denoted TatP59W, TatLysP59W and R(7)W, respectively, it was found that both endocytotic and non-endocytotic uptake pathways are involved [Thoren et al., Biochem. Biophys. Res. Commun. 307 (2003) 100-107]. Non-endocytotic uptake was only observed for the arginine-rich peptides TatP59W and R(7)W. In this paper, the interactions of penetratin, R(7)W, TatP59W and TatLysP59W with phospholipid vesicles are compared in the search for an understanding of the mechanisms for cellular uptake. While R(7)W, TatP59W and TatLysP59W are found to promote vesicle fusion, indicated by mixing of membrane components, penetratin merely induces vesicle aggregation. Studies of the leakage from dye-loaded vesicles indicate that none of the peptides forms membrane pores and that vesicle fusion is not accompanied by leakage of the aqueous contents of the vesicles. These observations are important for a proper interpretation of future experiments on the interactions of these peptides with model membranes. We suggest that the discovered variations in propensity to destabilize phospholipid bilayers between the peptides investigated, in some cases sufficient to induce fusion, may be related to their different cellular uptake properties.  相似文献   

16.
Uptake of analogs of penetratin,Tat(48-60) and oligoarginine in live cells   总被引:4,自引:0,他引:4  
Cell-penetrating peptides are regarded as promising vectors for intracellular delivery of large, hydrophilic molecules, but their mechanism of uptake is poorly understood. Since it has now been demonstrated that the use of cell fixation leads to artifacts in microscopy studies on the cellular uptake of such peptides, much of what has been considered as established facts must be reinvestigated using live (unfixed) cells. In this work, the uptake of analogs of penetratin, Tat(48-60), and heptaarginine in two different cell lines was studied by confocal laser scanning microscopy. For penetratin, an apparently endocytotic uptake was observed, in disagreement with previous studies on fixed cells found in the literature. Substitution of the two tryptophan residues, earlier reported to be essential for cellular uptake, did not alter the uptake characteristics. A heptaarginine peptide, with a tryptophan residue added in the C-terminus, was found to be internalized by cells via an energy-independent, non-endocytotic pathway. Finally, a crucial role for arginine residues in penetratin and Tat(48-60) was demonstrated.  相似文献   

17.
The third helix of the homeodomain of the Antennapedia homeoprotein can translocate through the cell membrane into the nucleus and can be used as an intracellular vehicle for the delivery of oligopeptides and oligonucleotides. A 16-amino acid-long peptide fragment, called penetratin, is internalized by the cells in a specific, non-receptor-mediated manner. For a better understanding of the mechanism of the transfer, penetratin and two analogs were synthesized:The conformation of penetratin peptides 1-3 was examined in both extracellular matrix-mimetic and membrane-mimetic environments. (1)H-NMR and CD spectroscopic measurements were performed in mixtures of TFE/water with different ratios. Peptides 1-3 were labeled by reacting their N-terminal free amino group with fluorescein isothiocyanate (FITC). Membrane translocation of the labelled peptides was studied with cell cultures [WEHI 164 murine fibrosarcoma cells (WC/1); chicken fibroblast cells (CEC-32); chicken monocytic cells (HD-11); human fibroblast (SV 80) and human monocytic cells (MonoMac-6)]. Confocal laser scanning microscopy and flow cytometry assay were used to study membrane translocation. Amphiphilicity was calculated for each peptide. In our experiments all the penetratin peptides penetrated into the cells. Helical conformation and membrane translocation ability showed little correlation: substitution of the two Trp with Phe increased the stability of helical conformation but decreased membrane translocation activity. The results of fluorescence microscopy and flow cytometry show that penetratin can be translocated into the cells by two mechanisms: endocytosis and direct transport through the cell membrane.  相似文献   

18.
The interaction between the cell-penetrating peptide (CPP) penetratin and different membrane mimetic environments has been investigated by two different NMR methods: 15N spin relaxation and translational diffusion. Diffusion coefficients were measured for penetratin in neutral and in negatively charged bicelles of different size, in sodium dodecyl sulfate micelles (SDS), and in aqueous solution. The diffusion coefficients were used to estimate the amount of free and bicelle/micelle-bound penetratin and the results revealed that penetratin binds almost fully to all studied membrane mimetics. 15N relaxation data for three sites in penetratin were interpreted with the model-free approach to obtain overall and local dynamics. Overall correlation times for penetratin were in agreement with findings for other peptides of similar size in the same solvents. Large differences in order parameters were observed for penetratin in the different membrane mimetics. Negatively charged surfaces were seen to restrict motional flexibility, while a more neutral membrane mimetic did not. This indicates that although the peptide binds to both bicelles and SDS micelles, the interaction between penetratin and the various membrane mimetics is different.  相似文献   

19.
Transportan is a 27-residue peptide (GWTLN SAGYL LGKIN LKALA ALAKK IL-amide) which has the ability to penetrate into living cells carrying a hydrophilic load. Transportan is a chimeric peptide constructed from the 12 N-terminal residues of galanin in the N-terminus with the 14-residue sequence of mastoparan in the C-terminus and a connecting lysine. Circular dichroism studies of transportan and mastoparan show that both peptides have close to random coil secondary structure in water. Sodium dodecyl sulfate (SDS) micelles induce 60% helix in transportan and 75% helix in mastoparan. The 600 MHz (1)H NMR studies of secondary structure in SDS micelles confirm the helix in mastoparan and show that in transportan the helix is localized to the mastoparan part. The less structured N-terminus of transportan has a secondary structure similar to that of the same sequence in galanin [Ohman, A., et al. (1998) Biochemistry 37, 9169-9178]. The position of mastoparan and transportan relative to the SDS micelle surface was studied by adding spin-labeled 5-doxyl- or 12-doxyl-stearic acid or Mn2+ to the peptide/micelle system. The combined results show that the peptides are for the most part buried in the SDS micelles. Only the C-terminal parts of both peptides and the central segment connecting the two parts of transportan are clearly surface exposed. For mastoparan, the secondary chemical shifts of the amide protons were found to vary periodically and display a pattern almost identical to those reported for mastoparan in phospholipid bicelles [Vold, R., et al. (1997) J. Biomol. NMR 9, 329-335], indicating similar structures and interactions in the two membrane-mimicking environments.  相似文献   

20.
The Antennapedia homeodomain protein of Drosophila has the ability to penetrate biological membranes and the third helix of this protein, residues 43-58, known as penetratin (RQIKIWFQNRRMKWKK-amide) has the same translocating properties as the entire protein. The variant, RQI KIFFQNRRMKFKK-amide, here called penetratin (W48F,W56F) does not have the same ability. We have determined a solution structure of penetratin and investigated the position of both peptides in negatively charged bicelles. A helical structure is seen for residues Lys46 through Met54. The secondary structure of the variant penetratin(W48F,W56F) in bicelles appears to be very similar. Paramagnetic spin-label studies and analysis of NOEs between penetratin and the phospholipids show that penetratin is located within the bicelle surface. Penetratin (W48F,W56F) is also located inside the phospholipid bicelle, however, with its N-terminus more deeply inserted than that of wild-type penetratin. The subtle differences in the way the two peptides interact with a membrane in an equilibrium situation could be important for their translocating ability. As a comparison we have also investigated the secondary structure of penetratin(W48F,W56F) in SDS micelles and the results show that the structure is very similar in SDS and bicelles. In contrast, penetratin(W48F,W56F) and penetratin appear to be located differently in SDS micelles. This clearly shows the importance of using realistic membrane mimetics for investigating peptide-membrane interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号