首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.  相似文献   

2.
Expression of the Staphylococcus aureus plasmid-encoded QacA multidrug transporter is regulated by the divergently encoded QacR repressor protein. To circumvent the formation of disulfide-bonded degradation products, site-directed mutagenesis to replace the two cysteine residues in wild-type QacR was undertaken. Analysis of a resultant cysteineless QacR derivative indicated that it retained full DNA-binding activities in vivo and in vitro and continued to be fully proficient for the mediation of induction of qacA expression in response to a range of structurally dissimilar multidrug transporter substrates. The cysteineless QacR protein was used in cross-linking and dynamic light-scattering experiments to show that its native form was a dimer, whereas gel filtration indicated that four QacR molecules bound per DNA operator site. The addition of inducing compounds led to the dissociation of the four operator-bound QacR molecules from the DNA as dimers. Binding of QacR dimers to DNA was found to be dependent on the correct spacing of the operator half-sites. A revised model proposed for the regulation of qacA expression by QacR features the unusual characteristic of one dimer of the regulatory protein binding to each operator half-site by a process that does not appear to require the prior self-assembly of QacR into tetramers.  相似文献   

3.
4.
5.
Resistance to intercalating dyes (ethidium, acriflavine) and other organic cations, such as quaternary ammonium-type antiseptic compounds, mediated by the Staphylococcus aureus plasmid pSK1 is specified by an energy-dependent export mechanism encoded by the qacA gene. From nucleotide sequence analysis, qacA is predicted to encode a protein of Mr 55017 containing 514 amino acids. The gene is likely to initiate with a CUG codon, and a 36 bp palindrome immediately preceding qacA, along with an upstream reading frame with homology to the TetR repressors, may be components of a regulatory circuit. The putative polypeptide specified by qacA has properties typical of a cytoplasmic membrane protein, and is indicated to be a member of a transport protein family that includes proteins responsible for export-mediated resistance to tetracycline and methylenomycin, and uptake of sugars and quinate. The analysis suggests that N- and C-terminal regions of these proteins are involved in energy coupling (proton translocation) and substrate transport, respectively. The last common ancestor of the qacA and related tet (tetracycline resistance) lineages is inferred to have been repressor controlled, as occurs for modern tet determinants from Gram-negative, but not those from Gram-positive, bacteria.  相似文献   

6.
7.
The staphylococcal multidrug exporter QacA confers resistance to a wide range of structurally dissimilar monovalent and bivalent cationic antimicrobial compounds. To understand the functional importance of transmembrane segment 10, which is thought to be involved in substrate binding, cysteine-scanning mutagenesis was performed in which 35 amino acid residues in the putative transmembrane helix and its flanking regions were replaced in turn with cysteine. Solvent accessibility analysis of the introduced cysteine residues using fluorescein maleimide indicated that transmembrane segment 10 of QacA contains a 20-amino-acid hydrophobic core and may extend from Pro-309 to Ala-334. Phenotypic analysis and fluorimetric transport assays of these mutants showed that Gly-313 is important for the efflux of both monovalent and bivalent cationic substrates, whereas Asp-323 is only important for the efflux of bivalent substrates and probably forms part of the bivalent substrate-binding site(s) together with Met-319. Furthermore, the effects of N-ethyl-maleimide treatment on ethidium and 4',6-diamidino-2-phenylindole export mediated by the QacA mutants suggest that the face of transmembrane segment 10 that contains Asp-323 may also be close to the monovalent substrate-binding site(s), making this helix an integral component of the QacA multidrug-binding pocket.  相似文献   

8.
Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein.  相似文献   

9.
《Journal of molecular biology》2019,431(11):2163-2179
QacA is a drug:H+ antiporter with 14 transmembrane helices that confers antibacterial resistance to methicillin-resistant Staphylococcus aureus strains, with homologs in other pathogenic organisms. It is a highly promiscuous antiporter, capable of H+-driven efflux of a wide array of cationic antibacterial compounds and dyes. Our study, using a homology model of QacA, reveals a group of six protonatable residues in its vestibule. Systematic mutagenesis resulted in the identification of D34 (TM1), and a cluster of acidic residues in TM13 including E407 and D411 and D323 in TM10, as being crucial for substrate recognition and transport of monovalent and divalent cationic antibacterial compounds. The transport and binding properties of QacA and its mutants were explored using whole cells, inside-out vesicles, substrate-induced H+ release and microscale thermophoresis-based assays. The activity of purified QacA was also observed using proteoliposome-based substrate-induced H+ transport assay. Our results identify two sites, D34 and D411 as vital players in substrate recognition, while E407 facilitates substrate efflux as a protonation site. We also observe that E407 plays an additional role as a substrate recognition site for the transport of dequalinium, a divalent quaternary ammonium compound. These observations rationalize the promiscuity of QacA for diverse substrates. The study unravels the role of acidic residues in QacA with implications for substrate recognition, promiscuity and processive transport in multidrug efflux transporters, related to QacA.  相似文献   

10.
11.
12.
In Gram-negative bacteria, a subset of inner membrane proteins in the major facilitator superfamily (MFS) acts as efflux pumps to decrease the intracellular concentrations of multiple toxic substrates and confers multidrug resistance. The Salmonella enterica sv. Typhimurium smvA gene encodes a product predicted to be an MFS protein most similar to QacA of Staphylococcus aureus. Like mutations in qacA, mutations in smvA confer increased sensitivity to methyl viologen (MV). Mutations in the adjacent ompD (porin) and yddG (drug/metabolite transporter) genes also confer increased sensitivity to MV, and mutations in smvA are epistatic to mutations in ompD or yddG for this phenotype. YddG and OmpD probably comprise a second efflux pump in which the OmpD porin acts as an outer membrane channel (OMC) protein for the efflux of MV and functions independently of the SmvA pump. In support of this idea, the pump dependent on YddG and OmpD has a different substrate specificity from the pump dependent on SmvA. Mutations in tolC, which encodes an OMC protein, confer increased resistance to MV. TolC apparently facilitates the import of MV, and a subset of OMC proteins including the OmpD porin and TolC may facilitate both import and export of distinct subsets of toxic substrates.  相似文献   

13.
We have previously cloned a 3.5 kb fragment from the Staphylococcus aureus multiresistance plasmid pSK1 which carries the qacA determinant responsible for linked resistance to acriflavine (Acr), ethidium bromide (Ebr), quaternary ammonium compounds (Qar), propamidine isethionate (Pir), and diamidinodiphenylamine dihydrochloride (Ddr). This report presents a biochemical and physical analysis of qacA and shows the widespread carriage of this gene on S. aureus resistance plasmids. Tn5 insertion mutagenesis defined the extent of qacA to within 2.40 kb of pSK1 DNA. Examination of the expression of insertion and deletion mutants of the cloned qacA sequences in both maxicells and minicells led to the association of a 50 kDa protein, designated QacA, with the AcrEbrQarPirDdr phenotype. Based on fluorimetric and isotopic assays used to determine the extent of accumulation of ethidium bromide by S. aureus strains harbouring pSK1, we propose that the basis of AcrEbrQarPirDdr in S. aureus is a qacA-mediated efflux system.  相似文献   

14.
15.
16.
Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q) and QacR(E120Q) with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q)-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.  相似文献   

17.
The optimum conditions for autolysis of Clostridium acetobutylicum ATCC 824 were determined. Autolysis was optimal at pH 6.3 and 55 degrees C in 0.1 M-sodium acetate/phosphate buffer. The ability of cells to autolyse decreased sharply at the end of the exponential phase of growth. Lysis was stimulated by monovalent cations and compounds that complex divalent cations, and inhibited by divalent cations. The autolysin of C. acetobutylicum, which was mainly cytoplasmic, was purified to homogeneity and characterized as a muramidase. The enzyme was identical to the extracellular muramidase in terms of M(r), isoelectric point and NH2-terminal amino acid sequence. The autolysin was inhibited by lipoteichoic acids and cardiolipin but not by phosphatidylethanolamine and phosphatidylglycerol. A mechanism of regulation and fixation involving lipoteichoic acid, cardiolipin and divalent cations is proposed.  相似文献   

18.
The plasmid-encoded QacA multidrug transport protein confers high-level resistance to a range of commonly used antimicrobials and is carried by widespread clinical strains of the human pathogen Staphylococcus aureus making it a potential target for future drug therapies. In order to obtain a sufficient yield of QacA protein for structural and biophysical studies, an optimized strategy for QacA overexpression was developed. QacA expression, directed from several vector systems in Escherichia coli, was tested under various growth and induction conditions and a synthetic qacA gene, codon-optimized for expression in E. coli was developed. Despite the extreme hydrophobicity and potential toxicity of the QacA secondary transport protein, a strategy based on the pBAD expression system, yielding up to four milligrams of approximately 95% pure QacA protein per litre of liquid culture, was devised. Purified QacA protein was examined using circular dichroism spectroscopy and displayed a secondary structure akin to that predicted from in silico analyses. Additionally, detergent solubilized QacA protein was shown to bind its fluorescent substrate rhodamine 6G with micro-molar affinity using a fluorescence polarization-based binding assay, similar to other multidrug transport proteins. To check the applicability of the expression/purification system described for QacA to other staphylococcal secondary transporters, the gene encoding the TetA(K) tetracycline efflux protein, which was previously recalcitrant to overexpression, was incorporated into the pBAD-based system and shown to be readily produced at easily detectable levels. Therefore, this expression system could be of general use for the production of secondary transport proteins in E. coli.  相似文献   

19.
Multidrug transporters recognize and transport substrates with apparently little common structural features. At times these substrates are neutral, negatively, or positively charged, and only limited information is available as to how these proteins deal with the energetic consequences of transport of substrates with different charges. Multidrug transporters and drug-specific efflux systems are responsible for clinically significant resistance to chemotherapeutic agents in pathogenic bacteria, fungi, parasites, and human cancer cells. Understanding how these efflux systems handle different substrates may also have practical implications in the development of strategies to overcome the resistance mechanisms mediated by these proteins. Here, we compare transport of monovalent and divalent substrates by EmrE, a multidrug transporter from Escherichia coli, in intact cells and in proteoliposomes reconstituted with the purified protein. The results demonstrated that whereas the transport of monovalent substrates involves charge movement (i.e. electrogenic), the transport of divalent substrate does not (i.e. electroneutral). Together with previous results, these findings suggest that an EmrE dimer exchanges two protons per substrate molecule during each transport cycle. In intact cells, under conditions where the only driving force is the electrical potential, EmrE confers resistance to monovalent substrates but not to divalent ones. In the presence of proton gradients, resistance to both types of substrates is detected. The finding that under some conditions EmrE does not remove certain types of drugs points out the importance of an in-depth understanding of mechanisms of action of multidrug transporters to devise strategies for coping with the problem of multidrug resistance.  相似文献   

20.
An endoribonuclease existing as a complex with inhibitor in the cytosol of rat liver has been purified about 128,000-fold after inactivation of the inhibitor with CdCl2. The enzyme had a molecular weight of 16,000 and produced 3'-CMP via 2',3'-cyclic phosphate of cytidine from poly(C). The breakdown of poly(U) by the enzyme was less than 5% of poly(C) breakdown. Poly(A) was not hydrolyzed by the enzyme. The enzyme had a pH optimum of 7.5-8, was heat-stable and had a Km of 952 micrograms yeast RNA and a Km of 198 micrograms poly(C) per ml. The maximal velocities for yeast RNA and poly(C) degradation were 3,970 A260/min/mg protein and 1,890 A260/min/mg protein, respectively. The enzyme was slightly stimulated by polyamines or monovalent and divalent cations except Mn2+, but was inhibited by nucleoside triphosphate, poly(G) and rat liver RNase inhibitor. Inhibition of the enzyme by rat liver RNase inhibitor was not prevented by monovalent and divalent cations or polyamines, although inhibition by poly(G) was prevented by these ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号