首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we present an initial determination of the biochemical defect present in a Chinese hamster ovary cell line selected for resistance to concanavalin A. Membranes of this mutant, B211, incorporated at least 10-fold less mannose from GDP-[14C]mannose into oligosaccharide-lipid than membranes of the wild type. In the presence of dolichol phosphate, membranes of the mutant and wild type exhibited similar rates of synthesis of number of early intermediates, namely, mannosylphosphoryldolichol, N-acetylglucosaminyl- and N,N'-diacetylchitobiosylpyrophosphoryldolichol, glucosylphosphoryldolichol, and mannosyloligosaccharide-lipid. The membranes of B211 did not incorporate glucose from UDP-[3H]glucose into oligosaccharide-lipid or protein. Comparison by gel filtration chromatography of oligosaccharides derived from the oligosaccharide-lipids of B211 and wild type cells labeled with [2-3H]mannose revealed that B211 cells incorporated little if any label into an oligosaccharide corresponding to the most excluded oligosaccharide labeled by wild type cells. This concanavalin A-resistant cell line appears to lack the ability to glucosylate oligosaccharide-lipid.  相似文献   

2.
Incubations of thyroid microsomes with radiolabeled dolichyl pyrophosphoryl oligosaccharide (Glc3Man9-GlcNAc2) under conditions optimal for the N-glycosylation of protein resulted in the release, by apparently independent enzymatic reactions, of two types of neutral glucosylated polymannose oligosaccharides which differed from each other by terminating either in an N-acetylglucosamine residue (Glc3Man9GlcNAc1) or a di-N-acetylchitobiose moiety (Glc3Man9GlcNAc2). The first mentioned oligosaccharide, which was released in a steady and slow process unaffected by the addition of EDTA, appeared to be primarily the product of endo-beta-N-acetylglucosaminidase action on newly synthesized glycoprotein and such an enzyme with a neutral pH optimum capable of hydrolyzing exogenous glycopeptides and oligosaccharides (Km = 18 microM) was found in the thyroid microsomal fraction. The Glc3Man9GlcNAc2 oligosaccharide, in contrast, appeared to originate from the oligosaccharide-lipid by a rapid hydrolysis reaction which closely paralleled the N-glycosylation step, progressing as long as oligosaccharide transfer to protein occurred and terminating when carbohydrate attachment ceased either due to limitation of lipid-saccharide donor or addition of EDTA. There was a striking similarity between oligosaccharide release and transfer to protein with lipid-linked Glc3Man9GlcNAc2 serving as a 10-fold better substrate for both reactions than lipid-linked Man9-8GlcNAc2. The coincidence of transferase and hydrolase activities suggest the possibility of the existence of one enzyme with both functions. The physiological relevance of oligosaccharide release was indicated by the formation of such molecules in thyroid slices radiolabeled with [2-3H]mannose. Large oligosaccharides predominated (12 nmol/g) and consisted of two families of components; one group terminating in N-acetylglucosamine, ranged from Glc1Man9GlcNAc1 to Man5GlcNAc1 while the other contained the di-N-acetylchitobiose sequence and included Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, and Man9GlcNAc2.  相似文献   

3.
The potential role of degradative mechanisms in controlling the level of the dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 required for protein N-glycosylation has been explored in thyroid slices and endoplasmic reticulum (ER) vesicles, focusing on cleavage of the oligosaccharide from its lipid attachment and on the enzymatic removal of peripheral monosaccharide residues. Vesicle incubations demonstrated a substantial release of free Glc3Man9GlcNAc2 (at 30 min approximately 35% of that transferred to protein) which was inhibited in the presence of exogenous peptide acceptor and was sensitive to disruption of membrane integrity by detergent. In thyroid slices glucosylated oligosaccharides terminating in the di-N-acetylchitobiose sequence were also noted and these continued to be formed even during inhibition by puromycin of both protein synthesis and the attendant N-glycosylation. These observations indicated that the oligosaccharide originated from the lipid donor and suggested, together with previously reported similarities in substrate specificity and cofactor requirements, that the oligosaccharyltransferase can carry out in vivo both the hydrolytic and transfer functions. In addition to the release of the intact Glc3Man9GlcNAc2, we also obtained evidence that the lipid-linked oligosaccharide can be modified by the in vivo action of ER glycosidases. Since radiolabeling of the oligosaccharide-lipid in thyroid slices indicated a preferential turnover of the glucose residues, the possible existence of a glucosyltransferase-glucosidase shuttle was explored with the use of castanospermine. In the presence of this glucosidase inhibitor, the formation of under-glucosylated and nonglucosylated oligosaccharides was not observed, even under conditions of energy deprivation in which they accumulate. Glucosidase inhibition in ER vesicle incubations likewise prevented the appearance of incompletely glucosylated oligosaccharide-lipids. Studies employing the mannosidase inhibitor 1-deoxymannojirimycin in thyroid slices furthermore indicated that in vivo removal of at least one mannose residue from the dolichyl pyrophosphate-linked oligosaccharide can occur.  相似文献   

4.
A new membrane preparation from Saccharomyces cerevisiae was developed, which effectively catalyzes the synthesis of large oligosaccharide-lipids from GDP-Man and UDP-Glc allowing a detailed study of their formation and size. The oligosaccharide from an incubation with GDP-Man could be separated by gel filtration chromatography into several species consisting of two N-acetylglucosamine (GlcNAc) residues at the reducing end and differing by one mannos unit; the major compound formed has the composition (Man)9(GlcNAc)2. Upon incubation with UDP-Glc, three oligosaccharides corresponding to the size of (Glc)1-3(Man)9(GlcNAc)2 are formed. Thus, the oligosaccharides generated in vitro by the yeast membranes appear to be identical in size with the oligosaccharides found in animal systems. In addition the results indicate that dolichyl phosphate mannoe (DolP-Man) is the immediate donor in assembling the oligosaccharide moiety from (Man)5(GlcNAc)2 to (Man)9(GlcNAc)2. All three glucose residues are transferred from DolP-Glc. Experiments with isolated [Glc-14C]oligosaccharide-lipid as substrate demonstrated that the oligosaccharide chain is transferred to an endogenous membrane protein acceptor. Moreover, transfer is followed by an enzymic removal of glucose residues, due to a glucosidase activity associated with the membranes. Glucose release from the free [Glc-14C]oligosaccharide is less effective than from protein-bound oligosaccharide. Glycosylation was also observed using [Man-14C]oligosaccharide-lipid or DolPP-(GlcNAc)2 as donor. However, transfer in the presence of glucose seems to be more rapid. The mannose-containing oligosaccharide, released from the lipid, was shown to function as a substrate for further chain elongation reactions utilizing GDP-Man but not DolPP-Man as donor. It is suggested that the immediate precursor in the synthesis of the heterogeneous core region, (Man)12-17(GlcNAc)2, of yeast mannoproteins is a glucose-containing lipid-oligosaccharide with the composition (Glc)3(Man)9(GlcNAc)2, i.e. only part of what has been defined as inner core is built up on the lipid carrier. After transfer to protein the oligosaccharide is modified by excision of the glucose residues, followed subsequently by further elongation from GDP-Man to give the size of th oligosaccharide chains found in native mannoproteins.  相似文献   

5.
Rabbit liver microsomes catalyzed mannosyltransfer from GDP-mannose to oligosaccharide-lipids isolated from porcine liver. The transfer occurred in the presence of 10 mM EDTA, a condition under which the formation of dolichol-P-mannose and other chloroform soluble mannosyl-lipids was almost completely inhibited, indicating that the mannosyl-oligosaccharide linkage was formed by a direct transfer of mannose from the nucleotide sugar. Virtually all of the mannose incorporated into the oligosaccharides was released by α-mannosidase, demonstrating the formation of an α-mannosyl-linkage in the oligosaccharide-lipid product. An enzyme catalyzing the divalent cation independent transfer of mannose from GDP-mannose to exogenous oligosaccharide-lipids was solubilized from rabbit liver microsomes and purified over 10 fold.  相似文献   

6.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

7.
Energy deprivation, induced in thyroid slices by incubation with an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenylhydrazone) or inhibitors of respiration (N2 or antimycin A), led to a disturbance in oligosaccharide-lipid metabolism which was characterized by a pronounced depletion of the glucosylated (Glc3Man9GlcNAc2) dolichyl pyrophosphoryl saccharide with an attendant accumulation of the Man9GlcNAc2 and, to a lesser extent, the Man8GlcNAc2 lipid-linked species. A concomitant decrease in the N-glycosylation of proteins was furthermore observed. The distribution of lipid-derived oligosaccharides observed by thin layer chromatographic separation was similar whether radiolabeling was achieved by a metabolic ([14C]glucose or [2-3H]mannose incubation) or chemical ([3H]NaBH4) procedure. The latter method proved useful for measuring the levels of individual oligosaccharide-lipids in unincubated tissue, and in this way it was found that unless thyroid was rapidly frozen or immediately immersed in oxygenated medium a marked decrease of glucose-containing oligosaccharide-lipids occurred which could, however, be reversed by a short incubation. The addition of glucose to the slice incubations did not prevent the Man8-9GlcNAc2 accumulation brought about by the inhibitors of energy production, nor did it alter the oligosaccharide-lipid pattern of uninhibited slices. The effect of the inhibitors on metabolically labeled liver slices was similar to that observed in thyroid. The size of the total chloroform/methanol/water (10:10:3)-extractable oligosaccharide-lipid pool (Glc3-Man9GlcNAc2 to Man5GlcNAc2) of thyroid remained quite constant (about 2 nmol/g) regardless of the energy state, and no substantial change in the level of smaller oligosaccharide-lipids, primarily represented by Man2GlcNAc2 (0.5 nmol/g) was evident. Moreover, no change in the total pool sizes was observed in puromycin-treated slices. The possible mechanisms by which energy deprivation leads to an accumulation of the glucose-free oligosaccharide-lipids are evaluated. While it is likely that a selective impairment of glucosylation of newly formed molecules occurs, it is also possible that an imbalance occurs in a postulated glucosyltransferase-glucosidase shuttle with a trapping of the oligosaccharide-lipid in its unglucosylated form.  相似文献   

8.
Endo-β-N-acetylglucosaminidase H (endo H) is an enzyme which acts on asparagine- and lipid-linked oligosaccharides containing five or more mannose residues. Complex oligosaccharides and glycopeptides are completely resistant to the action of the enzyme. We have carried out pulse-chase experiments with 35S-methionine and 3H-mannose in uninfected cells and in cells infected with Sindbis virus and vesicular stomatitis virus (VSV). In each case, the labeled materials were analyzed for sensitivity to endo H by polyacrylamide gel electrophoresis and gel filtration. We find that endo H releases all the labeled mannose from pulse-labeled proteins. Initially, the released material is nearly identical in size to the endo H cleavage product derived from lipid-linked oligosaccharides present in the same cells. During chase periods, 35S-methionine and 3H-mannose protein becomes increasingly resistant to the enzyme. Moreover, the 3H-mannose-labeled material released from the protein during chase periods is smaller in size than the oligosaccharide from the lipid.On the basis of these results and results from other laboratories, we propose that during glycosylation of asparagine residues, a common oligosaccharide is transferred from the lipid carrier to protein and is subsequently processed to yield the so-called “high mannose” and “complex” oligosaccharides. Since, on the basis of present evidence, the lipid-linked oligosaccharide contains two N-acetylglucosamine, 8–12 mannose and 1–2 glucose molecules, it seems probable that the carbohydrate-processing systems remove half or more of the mannose and all of the glucose residues at sites destined to become complex glycopeptides. Removal of mannose and glucose residues may also occur at sites destined to become mature high mannose glycopeptides.  相似文献   

9.
This paper presents kinetic and structural analyses of oligosaccharidematerial released during glycosylation in permeabilized Chinesehamster ovary cells incubated with sugar nucleotides. Permeabilizedcells released 30 times more oligosaccharide material than metabolicallylabelled cells, normalized to the amount of labelled glycoproteinacceptor, making this an amenable system for study. Fifteento forty per cent of the oligosaccharide material released bypermeabilized cells was oligosaccharide-phosphate, dependingon the nature and amount of the oligosaccharide-lipids synthesized.The oligosaccharide-phosphates released were recovered in thecytosol, and were exclusively Man2GlcNAc2P and Man5GlcNAc2P,released from oligosaccharide-lipids thought to be facing thecytosol. In contrast, the structures found as neutral oligosaccharidematerial were similar to those attached to newly synthesizedglycoproteins, indicating that the oligosaccharides were subjectedto the same processing enzymes whether or not they were proteinbound. Importantly, the kinetics of the transfer to proteinand the release of free neutral oligosaccharide were parallel,suggesting that the same enzyme was responsible for both processes.Structural analyses demonstrated that the same Man5GlcNAc2 structurewas transferred to protein and released as free oligosaccharide.Neutral oligosaccharides were found in both the cytosol andthe pellet; however, oligosaccharides with one GlcNAc residueat the reducing end (OS-Gn1) were found exclusively in the supemate.The major neutral oligosaccharide produced after 2 h of metaboliclabelling was Man5GlcNAc and it was found in the cytosol. lipid intermediates oligomannoside-phosphates permeabilized cells subcellular distribution of oligomannosides  相似文献   

10.
An oligosaccharide-P-P-lipid has been isolated from porcine liver by extraction with organic solvents and purified by chromatography on silica gel and DEAE-cellulose. The purified oligosaccharide-lipid was shown to contain mannose and N-acetylglucosamine in an approximate ratio of 1:1 and our results suggest that the major oligosaccharide component in the preparation was a tetrasaccharide with the composition (Man)2 (GlcNAc)2. When the oligosaccharide-lipid was incubated with GDP-[14C]mannose and a solubilized enzyme preparation from rabbit liver in the presence of MgCl2, three radioactive products could be isolated. The oligosaccharides in the products could be identified as a penta-, a hexa-, and a heptasaccharide. These products were formed by the stepwise addition of mannose to the growing oligosaccharide chain and GDP-mannose was indicated as the glycosyl donor in each reaction.  相似文献   

11.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

12.
Spiro MJ  Spiro RG 《Glycobiology》2001,11(10):803-811
To further explore the localization of the N-deglycosylation involved in the endoplasmic reticulum (ER)-associated quality control system we studied HepG2 cells infected with vesicular stomatitis virus (VSV) and its ts045 mutant, as in this system oligosaccharide release can be attributed solely to the VSV glycoprotein (G protein). We utilized the restricted intracellular migration of the mutant protein as well as dithiothreitol (DTT), low temperature, and a castanospermine (CST)-imposed glucosidase blockade to determine in which intracellular compartment deglycosylation takes place. Degradation of the VSV ts045 G protein was considerably greater at the nonpermissive than at the permissive temperature; this was reflected by a substantial increase in polymannose oligosaccharide release. Under both conditions these oligosaccharides were predominantly in the characteristic cytosolic form, which terminates in a single N-acetylglucosamine (OS-GlcNAc(1)); this was also the case in the presence of DTT, which retains the G protein completely in the ER. However when cells infected with the VSV mutant were examined at 15 degrees C or exposed to CST, both of which represent conditions that impair ER-to-cytosol transport, the released oligosaccharides were almost exclusively (> 95%) in the vesicular OS-GlcNAc(2) form; glucosidase blockade had a similar effect on the wild-type virus. Addition of puromycin to glucosidase-inhibited cells resulted in a pronounced reduction (> 90%) in oligosaccharide release, which reflected a comparable impairment in glycoprotein biosynthesis and indicated that the OS-GlcNAc(2) components originated from protein degradation rather than hydrolysis of oligosaccharide lipids. Our findings are consistent with N-deglycosylation of the VSV G protein in the ER and the subsequent transport of the released oligosaccharides to the cytosol where OS-GlcNAc(2) to OS-GlcNAc(1) conversion by an endo-beta-N-acetylglucosaminidase takes place. Studies with the ts045 G protein at the nonpermissive temperature permitted us to determine that it can be processed by Golgi endomannosidase although remaining endo H sensitive, supporting the concept that it recycles between the ER and cis-Golgi compartments.  相似文献   

13.
The endoglycosidase endo-beta-N-acetylglucominidase H (endo H) was used to examine the nature of the oligosaccharides associated with the herpes simplex virus type 1 glycoproteins gA, gB, and gC. Immunoprecipitates from detergent extracts of infected cells, using monospecific antisera to gAB and gC, were treated with endo H. The low-molecular-weight precursor to gC, pgC(105), was found to be sensitive to endo H. Removal of the endo H-sensitive oligosaccharide chains from pgC(105) resulted in a protein with an apparent molecular weight of 75,000. In contrast, the fully glycosylated gC was not sensitive to endo H treatment. These results suggested that the oligosaccharide chains of pgC(105) were primarily of the simple high-mannose type. Both gA and gB were sensitive to endo H treatment; however, gB appeared to be only partially susceptible, whereas [3H]mannose-labeled gA was not detectable after endo H treatment. These results that gB contained both complex- and simple-type oligosaccharides, and gA contained only simple-type oligosaccharides. An accumulation of the high-mannose glycoproteins pgC(105) and gA was observed in monensin-treated infected cells with a concomitant inhibition of gB and gC. Glycoproteins gA and pgC(105) synthesized in the presence of monensin were also sensitive to endo H treatment.  相似文献   

14.
Incubation of Crithidia fasciculata cells with [U-14C] glucose led to the synthesis of Man-P-dolichol but not of Glc-P-dolichol. The main and largest dolichol-P-P-linked oligosaccharide formed was Man7GlcNAc2 whether labeling was performed in 5 mM sodium pyruvate or 5.5 mM glucose. The protein-linked, endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharides isolated from mature glycoproteins were Man7GlcNAc and Gal1Man6GlcNAc, the latter being a mixture of two isomers. All the galactose residues were present in the furanose configuration, as judged by their extreme lability to acid hydrolysis, by the products obtained upon mild periodate oxidation, and by their sensitivity to beta-galactofuranosidase. Labeling cells for short times or at low temperature yielded a protein-bound, endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharide whose composition was Glc1Man7GlcNAc, of transient existence, and that was mainly labeled in the glucose residue. The latter oligosaccharide was detected on paper chromatography only as a smearing of Man7GlcNAc and Gal1Man6GlcNAc when cells were labeled with [2-3H] mannose, thus indicating that it was only present in minute amounts. Protein-bound endo beta-N-acetylglucosaminidase H-resistant oligosaccharides liberated, upon a mild acid treatment, galactose residues and an unidentified substituent. The treatment rendered the oligosaccharides sensitive to endo beta-N-acetylglucosaminidase H, which liberated Man7GlcNAc and two isomers of Man6GlcNAc. An almost similar mechanism of protein N-glycosylation, including the existence of galactofuranose residues in N-linked oligosaccharides, was found to occur in Crithidia harmosa.  相似文献   

15.
Previous studies from this laboratory have shown that particulate preparations from maturing cotton fibers catalyze the transfer of mannose from GDP-[14C]mannose into mannosylphosphorylpolyisoprenol (Forsee, W. T., and Elbein,A. D. (1973) J. Biol. Chem. 248, 2858-2867). In this report, we show that these particulate preparations also catalyze the inocoporation of mannose from GDP-[14C]mannose into lipid-linked oligosaccharides and into glycoprotein. The oligosaccharide-lipids were treated with dilute acid to liberate the water-soluble oligosaccharides and these oligosaccharides could then be separated into seven or eight distinct radioactive peaks by paper chromatography in isobutyric acid/NH4OH/H2betaO (57/4/39). The smallest of the oligosaccharides appears to be a trisaccharide with the structure Man leads to GlcNAc-GlcNAc. Thus the oligosaccharides attached to the lipids apparently range in size from those having 3 glycose units to those having approximately 8 to 10 glycose units. The radioactivity in the smaller-sized oligosaccharide-lipids could be chased into the larger oligosaccharide-lipids by a second incubation in the presence of unlabeled GDP-mannose. The sugar at the reducing ends of the oligosaccharides was identified as GlcNAc while some mannose (20 to 30%) was present in alpha linkages at the nonreducing ends...  相似文献   

16.
The beta-glucuronidase in homogenates of 12-day chick embryo livers catalyzed the release of glucuronic acid from 4-methylumbelliferyl-beta-D-glucuronide and from the nonreducing terminals of the hexasaccharides of chondroitin-6-SO4 and chondroitin-4-SO4 at rates of 143, 114, and 108 nmol of glucuronic acid/h/mg of protein, respectively, when assayed at pH 3.5 in 0.05 M sodium acetate buffer. During a 60-fold purification of the enzyme, the ratios of the activities on these substrates did not change. When 4-methylumbelliferyl-beta-D-glucuronide was used as substrate the enzyme was active at pH values from 3.0 to 5.5, with maximal activity between pH values 4.0 and 4.5. Concentrations of NaCl from 0.15 to 0.3 M inhibited the activity at low pH values but activated the enzyme between pH 4.0 and 5.5. The enzyme was active on the chondroitin-6-SO4 hexasaccharide from pH 3.0 to 5.5, with a broad optimum between 3.0 and 4.5. NaCl inhibited the activity on the oligosaccharide substrate at all pH values. Eadie-Scatchard plots of rates of 4-methylumbelliferyl-beta-D-glucuronide hydrolysis at substrate concentrations ranging from 2 to 1000 microM showed multiple kinetic forms of the enzyme, a form with a Km of approximately 11 microM, and a second form with a Km of approximately 225 microM. The pH optimum of the low Km form was 3.5 to 4.0; that of the high Km form was pH 4.5. NaCl inhibited the activity of the low Km form, but activated the high Km form of the enzyme. Chondroitin SO4 oligosaccharides competed with 4-methylumbelliferyl-beta-D-glucuronide for the low Km form of the enzyme but had little effect on the hydrolysis of 4-methylumbelliferyl-beta-D-glucuronide by the high Km form of the enzyme. The activities of the beta-glucuronidase on tetra-, hexa-, octa-, and decasaccharides of chondroitin-6-SO4 and chondroitin-4-SO4, measured using a new assay procedure which can detect the formation of 1 nmol of product, were similar, although rates were somewhat lower for the higher oligosaccharides. With the exception of the chondroitin-4-SO4 tetrasaccharide, all of the oligosaccharide substrates saturated the enzyme at concentrations of 20 to 30 microM, indicating Km values of less than 10 to 15 microM for the oligosaccharides. Highly purified beta-glcuronidases from human placenta and from rat preputial gland also showed multiple kinetic forms when assayed using 4-methylumbelliferyl-beta-D-glucuronide as substrate.  相似文献   

17.
MOPC 315 is a BALB/c plasmacytoma which secretes a trinitrophenol-binding IgA lambda 2 paraprotein. We have investigated the incorporation of [3H]mannose into lipid-linked oligosaccharide precursors in wild-type MOPC 315/J and variant nonsecretory 315/P cells. In pulse labeling experiments, no differences could be detected in the ability of the two cell types to incorporate [3H]mannose into lipid-linked oligosaccharides containing 5 or less mannose residues. In contrast, quantitation of the incorporation of [3H]mannose into larger lipid-linked oligosaccharides and proteins revealed a 49 and 40% decrease, respectively, in the 315/P cells compared to wild-type cells. Further characterization of the lipid-linked structures documented a marked decrease in glucosylated oligosaccharides isolated from 315/P cells. When membranes from the two cell lines were analyzed for their ability to transfer [3H]glucose from UDP-[3H]glucose to [3H]glucosylphosphoryldolichol, an apparent deficiency was noted in the 315/P preparations. However, if assay conditions were adjusted to include AMP in the reaction mixtures, no differences in the in vitro synthesis of [3H]glucosylphosphoryldolichol or [3H]glucose-labeled oligosaccharide-lipid could be detected. In these reactions AMP was found to prevent hydrolysis of UDP-[3H]glucose by inhibiting nucleotide pyrophosphatase (EC 3.6.1.9), the specific activity of which was determined to be more than 100 times greater in variant 315/P compared to wild-type MOPC 315/J cells. This large difference in specific activity was not accompanied by similar differences in the activity of several other enzymes analyzed. A decrease in whole cell UDP-glucose pool size was not detected in 315/P cells. Therefore, if nucleotide pyrophosphatase is important for the control of substrates for glycosylation, it must regulate nucleotide sugar levels at a site other than the cytoplasm of cells, perhaps at the location of synthesis of the larger lipid-linked oligosaccharides.  相似文献   

18.
York WS  Hawkins R 《Glycobiology》2000,10(2):193-201
Oligoglycosyl (allyl, 2,3-dihydroxypropyl, ethyl, 2-hydroxyethyl, and methyl) beta-glycosides were generated by endo -transglycosylation reactions catalyzed by commercially available Trichoderma reesei cellulase. A polymeric donor substrate (xyloglucan or cellulose) was incubated with the enzyme in an aqueous solution containing 20% of the acceptor alcohol (allyl alcohol, glycerol, ethanol, ethylene glycol, and methanol, respectively). The products of these reactions included oligomeric alkyl beta-glycosides and reducing oligosaccharides. The high yield of alkyl beta-glycosides may be explained by the resistance of the xyloglucan beta-glycosides to cellulase-mediated hydrolysis. The resistance of the oligoxyloglucan beta-glycosides to endo glucanase catalyzed hydrolysis supports the hypothesis that productive binding of the glycan substrate depends on its interaction with enzyme subsites on both sides of the cleavage point, leading to distortion of the ring geometry of the residue whose glycosidic bond is cleaved. Oligoxyloglucan beta-glycosides were purified by a combination of gel-permeation and reversed-phase HPLC and were structurally characterized by MS and NMR spectroscopy. These results demonstrate that novel oligosaccharide beta-glycosides can be efficiently produced by enzyme-catalyzed fragmentation/transglycosylation reactions starting with a polysaccharide donor substrate. This class of reactions may represent a convenient source of beta-glycosides to be used as synthons for the rapid synthesis of complex glycans.  相似文献   

19.
Incubation of vesicular stomatitis virus-infected glucose-starved baby hamster kidney cells with [35S]methionine results in the synthesis of all viral proteins. However, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide mapping, the G protein is abnormally glycosylated. Metabolic labeling of the oligosaccharide-lipid precursors with [3H]mannose for 15 min, followed by Chromatographic and enzymatic analysis, indicates that the radiolabeled lipid-linked oligosaccharides are devoid of glucose in contrast to the glucosylated oligosaccharide-lipids synthesized by cells grown in the presence of glucose. Also, in contrast to control cells, examination of the glycopeptide fraction reveals the presence of [3H]mannose-labeled glycopeptides which are resistant to erado-β-N-acetylglucos-aminidase H and are smaller in size than glycopeptides from mature vesicular stomatitis virus. In order to observe these effects, a minimum time of 5 h of glucose deprivation is necessary and the addition of 55 μm glucose or mannose to the medium reverses these effects. These results indicate that vesicular stomatitis virus-infected BHK cells deprived of glucose are unable to glucosylate the oligosaccharide-lipid intermediates and, consequently, are unable to glycosylate the G protein normally.  相似文献   

20.
Large domains rich in serine and threonine, that are likely to exhibit clusters of O-linked oligosaccharides, have been reported adjacent to the anchor of several cell surface proteins. No such domain is evident in the primary sequence of rat renal gamma-glutamyltranspeptidase. However, papain treatment of the amphipathic enzyme (Triton-purified gamma-glutamyltranspeptidase, T gamma GT), pretreated with galactose oxidase and NaB3H4 (Frielle, T., and Curthoys, N. P. (1983) Biochemistry 22, 5709-5714), yields the hydrophilic enzyme (papain-treated Triton-purified gamma-glutamyltranspeptidase, PT gamma GT) and a labeled peptide which contains both the amino-terminal membrane anchor and the sequence Pro27-Thr28-Thr29-Ser30. Since [3H]galactose was identified in this peptide, the presence of O-linked oligosaccharides was investigated. Carbohydrate analysis is consistent with the presence of two simple O-linked oligosaccharides on T gamma GT and one on PT gamma GT. Lectin blot analysis of T gamma GT and PT gamma GT was carried out after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The small subunits of both T gamma GT and PT gamma GT and the large amphipathic subunit of T gamma GT all react with the peanut agglutinin lectin, but the large subunit of PT gamma GT exhibits no such reactivity. The reactivity with PNA is consistent with the presence of one oligosaccharide with the structure galactose beta 1-3N-acetylgalactosamine alpha 1-Ser/Thr attached to each subunit of T gamma GT. The papain-sensitivity of the oligosaccharide from the larger subunit is consistent with O-glycosylation at the Thr28-Thr29-Ser30 sequence. The results of lectin blot analysis with wheat germ agglutinin imply that the content of N-linked oligosaccharides is unaffected by papain treatment of the transpeptidase. These data represent the first direct evidence for O-glycosylation of a microvillar hydrolase at a site immediately adjacent to the membrane anchor and indicates that even small clusters of Thr and Ser can be O-glycosylated. Isolated O-linked oligosaccharides may have functional significance since single Ser and Thr residues are consistently found near the membrane anchor of many cell surface proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号