首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage Mu DNA integration in Escherichia coli strains infected after alignment of chromosomal replication was analyzed by a sandwich hybridization assay. The results indicated that Mu integrated into chromosomal segments at various distances from oriC with similar kinetics. In an extension of these studies, various Hfr strains were infected after alignment of chromosomal replication, and Mu transposition was shut down early after infection. The positions of integrated Mu copies were inferred from the transfer kinetics of Mu to an F- strain. Our analysis indicated that the location of Mu DNA in the host chromosome was not dependent on the positions of host replication forks at the time of infection. However, the procedure for aligning chromosomal replication affected DNA transfer by various Hfr strains differently, and this effect could account for prior results suggesting preferential integration of Mu at host replication forks.  相似文献   

2.
We have studies the phenotypic suppression of a dnaA46 mutation by plasmid integration at preselected chromosomal sites after introducing homologous sequences (Mu prophages) onto both the chromosomes and the suppressive plasmid. The plasmids used were all derived from plasmid R100.1. We found that the conditions required to get viable suppressive integration varied as the plasmid integration site moved from the origin to the terminus of chromosome replication. Two constraints were observed. Both appeared to be linked to the new characteristics acquired by chromosome replication from the integrated plasmid. One constraint was that strains with integrative suppression near the terminus terC were viable only in minimal medium. The rich medium sensitivity of these strains was correlated with a loss of regulation of initiation. The other constraint was a requirement for a specific orientation in certain regions of the chromosome. The two branches defined by normally initiated replication, between oriC and terC, were also symmetrical with respect to these plasmid orientation constraints. In studying the possible reasons for a plasmid orientation constraint, we found that, of the two forks initiated in bidirectional replication from the integrated plasmid, one was capable of moving across the terC region with a higher movability than the other.  相似文献   

3.
4.
We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.  相似文献   

5.
Summary Autoradiography was used to study the termination of replication of the circular chromosome of Escherichia coli. The experiments were conducted with cells in which termination occurred with a moderate amount of synchrony. Grain tracks were observed that demonstrated the approach at the replication terminus of the two replication forks involved in bidirectional replication. Other grain tracks were formed by replication forks that had met at the replication terminus. The frequency at which these patterns were observed indicates that most, if not all, terminations occur with both replication forks reaching the terminus at approximately the same time.  相似文献   

6.
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III‐mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.  相似文献   

7.
DNA transposition is central to the propagation of temperate phage Mu. A long-standing problem in Mu biology has been the mechanism by which the linear genome of an infecting phage, which is linked at both ends to DNA acquired from a previous host, integrates into the new host chromosome. If Mu were to use its well-established cointegrate mechanism for integration (single-strand nicks at Mu ends, joined to a staggered double-strand break in the target), the flanking host sequences would remain linked to Mu; target-primed replication of the linear integrant would subsequently break the chromosome. The absence of evidence for chromosome breaks has led to speculation that infecting Mu might use a cut-and-paste mechanism, whereby Mu DNA is cut away from the flanking sequences prior to integration. In this study we have followed the fate of the flanking DNA during the time course of Mu infection. We have found that these sequences are still attached to Mu upon integration and that they disappear soon after. The data rule out a cut-and-paste mechanism and suggest that infecting Mu integrates to generate simple insertions by a variation of its established cointegrate mechanism in which, instead of a "nick, join, and replicate" pathway, it follows a "nick, join, and process" pathway. The results show similarities with human immunodeficiency virus integration and provide a unifying mechanism for development of Mu along either the lysogenic or lytic pathway.  相似文献   

8.
In Escherichia coli colonies, patterns of differential gene expression can be visualized by the use of Mu d(lac) fusion elements. Here we report that patterned beta-galactosidase expression in colonies of strain MS1534 resulted from a novel mechanism, spatially localized replication of the Mu dII1681 element causing lacZ transposition to active expression sites. Mu dII1681 replication did not occur constitutively with a fixed probability but was dependent on the growth history of the bacterial population. The bacteria in which Mu dII1681 replication and lacZ transposition had occurred could no longer form colonies. These results lead to several interesting conclusions about cellular differentiation during colony development and the influence of bacterial growth history on gene expression and genetic change.  相似文献   

9.
In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks.  相似文献   

10.
Summary An in vitro system for investigating Mu replication and transposition using film lysates has recently been described (Higgins et al. 1983). Under most conditions examined, little or no replication initiation takes place in vitro. The data are consistent with Mu specific replication forks being initiated in vivo, and completing but not reinitiating a round of replication in vitro. Since Mu DNA replication is from left to right, an excess of right end sequences compared to left end sequences are replicated on the film lysates.Two conditions reported to specifically decrease Mu DNA replication in vivo (Pato and Reich 1982) were assessed for their effects on in vitro replication. Protein synthesis inhibition in vivo drastically decreased Mu specific DNA synthesis both in vivo and in the film lysates. However, temperature-sensitive (ts) A cells (A ts) incubated at the non-permissive temperature gave increased Mu synthesis at the permissive temperature in vitro. These conditions result in preferential mobilization of Mu specific forks, equal replication of the left and right end sequences of Mu, and meet minimal criteria for Mu replication initiation in the Ats lysates. The results are consistent with the Mu A protein limiting the initiation of Mu replication in vitro.  相似文献   

11.
Temperate phage Mu-1, which is able to integrate at random in its host chromosome, is also able to mediate integration of other circular deoxyribonucleic acid, as a lambda-gal mutant unable to integrate by itself. After mixed infection with lambda-gal and Mucplus, galplus transductants are recovered that have the lambda-gal integrated in any circular permutation, sandwiched between two complete Mu genomes in the same orientation, the whole Mu-lambda-gal-Mu structure being found at any location in the bacterial chromosome. Here we show that such a lambda-gal can integrate in an induced Mu lysogen. In this case the lambda-gal is again in any circular permutation, between two Mu in the same orientation, but it is always located at the site of the original Mu prophage, and the two surrounding Mu have always the same genotype as the original Mu prophage. Active Mu replication functions are not essential for that process to occur. This suggests that bacterial replication may generate two Mu copies that in some way can regenerate a Mu attachment site that recombines with the lambda-gal. A model is presented that accounts for these observations, may be helpful for understanding some complex features of Mu development, and may possibly offer a basis for explaining spontaneous duplications.  相似文献   

12.
Replication fork collapse at replication terminator sequences   总被引:5,自引:0,他引:5  
Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently.  相似文献   

13.
We used a flow cytometric assay to determine the frequency of replication fork arrests during a round of chromosome replication in Escherichia coli. After synchronized initiation from oriC in a dnaC(Ts) strain, non-permissive conditions were imposed, such that active DnaC was not available during elongation. Under these conditions, about 18% of the cells failed to complete chromosome replication. The sites of replication arrests were random and occurred on either arm of the bidirectionally replicating chromosome, as stalled forks accumulated at the terminus from both directions. The forks at the terminal Ter sites disappeared in the absence of Tus protein, as the active forks could then pass through the terminus to reach the arrest site, and the unfinished rounds of replication would be completed without DnaC. In a dnaC2(Ts)rep double mutant, almost all cells failed to complete chromosome replication in the absence of DnaC activity. As inactivation of Rep helicase (the rep gene product) has been shown to cause frequent replication arrests inducing double-strand breaks (DSBs) in a replicating chromosome, DnaC activity appears to be essential for replication restart from DSBs during elongation.  相似文献   

14.
R E Bird  M Chandler    L Caro 《Journal of bacteriology》1976,126(3):1215-1223
We have followed, by deoxyribonucleic acid-deoxyribonucleic acid hybridization, the order of replication of three chromosomal markers during a synchronous round of replication in three strains of Escherichia coli carrying a dnaAts mutation: one strain in which the F-like R factor R.100.1 was established as a plasmid and two strains in which the dnaA mutation was suppressed by the integration of R.100.1 into the chromosome. In the R+ strain at 30C, replication of the plasmid took place simultaneously with the initiation of chromosome replication at the normal origin. In the integratively suppressed Hfr strains, at 42.5 C, chromosome replication was initiated preferentially from the integrated plasmid; little or no initiation occurred at the normal origin. Similar results were obtained for the one strain tested at 30 C. For both Hfr strains at 42.5 C, the data suggest that at least part of the population replicated bidirectionally. This conclusion had been confirmed using an autoradiographic procedure. Both types of experiment indicate a wide variation in the rate of travel of individual replication forks within the population.  相似文献   

15.
Cox MM 《Mutation research》2002,510(1-2):107-120
When replication forks stall or collapse at sites of DNA damage, there are two avenues for fork rescue. Mutagenic translesion synthesis by a special class of DNA polymerases can move a fork past the damage, but can leave behind mutations. The alternative nonmutagenic pathways for fork repair involve cellular recombination systems. In bacteria, nonmutagenic repair of replication forks may occur as often as once per cell per generation, and is the favored path for fork restoration under normal growth conditions. Replication fork repair is almost certainly the major function of bacterial recombination systems, and was probably the impetus for the evolution of recombination systems. Increasingly, the nonmutagenic repair of replication forks is seen as a major function of eukaryotic recombination systems as well.  相似文献   

16.
Duplication and transmission of chromosomes require precise control of chromosome replication and segregation. Here we present evidence that RecG is a major factor influencing these processes in bacteria. We show that the extensive DnaA-independent stable DNA replication observed without RecG can lead to replication of any area of the chromosome. This replication is further elevated following irradiation with UV light and appears to be perpetuated by secondary events that continue long after the elimination of UV lesions. The resulting pathological cascade is associated with an increased number of replication forks traversing the chromosome, sometimes with extensive regional amplification of the chromosome, and with the accumulation of highly branched DNA intermediates containing few Holliday junctions. We propose that the cascade is triggered by replication fork collisions that generate 3' single-strand DNA flaps, providing sites for PriA to initiate re-replication of the DNA and thus to generate linear duplexes that provoke recombination, allowing priming of even further replication. Our results shed light on why termination of replication in bacteria is normally limited to a single encounter of two forks and carefully orchestrated within a restricted area, and explain how a system of multiple forks and random termination can operate in eukaryotes.  相似文献   

17.
The replication of chromosomes and minichromosomes in Escherichia coli B/r was examined under conditions in which the dnaA gene product was overproduced. Increased levels of the DnaA protein were achieved by thermoinduction of the dnaA gene, under the control of the lambda pL promoter, or by cellular maintenance of multicopy plasmids carrying the dnaA gene under the control of its own promoters. Previous work has shown that overproduction of DnaA protein stimulates replication of the chromosomal origin, oriC, but that the newly initiated forks do not progress along the length of the chromosome (T. Atlung, K. V. Rasmussen, E. Clausen, and F. G. Hansen, p. 282-297, in M. Schaechter, F. C. Neidhardt, J. L. Ingraham, and N. O. Kjeldgaard, ed., The Molecular Biology of Bacterial Growth, 1985). In the present study, it was found that overproduction of DnaA protein caused both a two- to threefold increase in the amount of residual chromosome replication and an extended synthesis of minichromosome DNA in the presence of rifampin. The amount of residual chromosome replication was consistent with the appearance of functional replication forks on the majority of the chromosomes. Since the rate of DNA accumulation and the cellular DNA/mass ratios were not increased significantly by overexpression of the dnaA gene, we concluded that the addition of rifampin either enabled stalled replication forks to proceed beyond oriC or enabled new forks to initiate on both chromosomes and minichromosomes, or both.  相似文献   

18.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

19.
Localisation of mini-Mu in its replication intermediates.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have located Mu delta 26 sequences straddling the forks in DNA structures which appear during Mu delta 26 replication, i.e., keys, pending keys, dumb- bells , partially fused circles, and asymmetrical forks. This brings additional evidence that these structures are mini-Mu replication intermediates. The possible relationship between these structures and those predicted by the different models formulated to explain transposition in procaryotes is discussed.  相似文献   

20.
Pathological replication in cells lacking RecG DNA translocase   总被引:1,自引:1,他引:0  
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation, and that this is associated with high levels of DNA synthesis initiated independently of the initiator protein DnaA. This UV-induced stable DNA replication is dependent on PriA helicase and continues long after UV-induced lesions have been excised. We suggest UV irradiation triggers the assembly of new replication forks, leading to multiple fork collisions outside the terminus area. Such collisions may generate branched DNAs that serve to establish further new forks, resulting in uncontrolled DNA amplification. We propose that RecG reduces the likelihood of this pathological cascade being set in motion by reducing initiation of replication at D- and R-loops, and other structures generated as a result of fork collisions. Our results shed light on why replication initiation in bacteria is limited to a single origin and why termination is carefully orchestrated to a single event within a restricted area each cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号