首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 The immunological properties of tumor-infiltrating (TIL) and peripheral blood lymphocytes (PBL) from 29 patients with renal cell carcinomas were characterized with respect to their phenotypic expression and cytokine production. TIL were isolated from mechanically disaggregated tumor material and PBL from peripheral blood by gradient centrifugation. To eliminate all non-lymphoid cells, CD3-positive cells were specifically separated from these cell fractions with anti-CD3 magnetic beads. These pure CD3-positive PBL (CD3+PBL) and TIL (CD3+TIL) were cultured with pokeweed mitogen and the levels of the cytokines interleukin-1α (IL-1α), IL-1β, IL-2, interferon γ (IFNγ), and tumor necrosis factor α (TNFα) measured in the 4-day post-inductional cell culture supernatants. In all cell cultures a wide range of cytokine values was found, indicating a large variation in the immunological activity of the lymphocytes of each individual. When the cell cultures of the CD3+TIL and CD3+PBL were compared in each patient similar values for IL-1α, IL-1β, IFNγ and TNFα were found. However CD3+TIL produced significantly lower levels of IL-2 than CD3+PBL upon mitogenic stimulation. This may be due to a lower CD4/CD8 ratio in the CD3+TIL as compared to the CD3+PBL. These results suggest that there are no fundamental qualitative and quantitative differences in the lymphokine-producing capacity of CD3+TIL and CD3+PBL derived from patients with renal cell carcinomas. Received: 8 August 1995 / Accepted: 23 January 1996  相似文献   

2.
 In the present study, we carried out a functional analysis of regional lymph node lymphocytes (RLNL) from patients with lung cancer after in vitro activation by interleukin-2 (IL-2) and interleukin-12 (IL-12). IL-12 (100 U/ml) enhanced both the proliferation and cytotoxic activity of RLNL in a culture with low doses of IL-2 (5 – 10 JRU/ml). After comparing an RLNL culture with a low dose of IL-2 alone, a higher proportion of CD8+ cells and CD56+ cells and a lower proportion of CD4+ cells were found in the culture with both IL-12 and a low dose of IL-2. Such a combination of the cytokines effectively activated RLNL in terms of the expression of IL-2 receptors. In the culture condition of IL-12 and a low dose of IL-2, a synergistic effect was observed in the production of such cytokines as interferon γ, tumor necrosis factor α (TNFα), and TNFβ, as well as in tumor cytotoxicity. However, the addition of IL-12 inhibited the cytotoxicity of RLNL in the culture with a high dose of IL-2 (100 JRU/ml). This inhibition is considered to be partially due to the endogenous production of TNFα by lymphocytes, because the neutralization of TNFα bioactivity partially restored the cytotoxic activities of RLNL. Furthermore, in the presence of hydrocortisone, IL-12 synergistically enhanced the cytotoxic activity of RLNL cultured with a high dose of IL-2. These results provide useful information about the improvement of adoptive immunotherapy against cancer using RLNL. Received: 2 February 1996 / Accepted: 30 July 1996  相似文献   

3.
IL-32 is a newly described cytokine in the human found to be an in vitro inducer of tumor necrosis factor alpha (TNFalpha). We examined the in vivo relationship between IL-32 and TNFalpha, and the pathologic role of IL-32 in the TNFalpha-related diseases - arthritis and colitis. We demonstrated by quantitative PCR assay that IL-32 mRNA was expressed in the lymphoid tissues, and in stimulated peripheral T cells, monocytes, and B cells. Activated T cells were important for IL-32 mRNA expression in monocytes and B cells. Interestingly, TNFalpha reciprocally induced IL-32 mRNA expression in T cells, monocyte-derived dendritic cells, and synovial fibroblasts. Moreover, IL-32 mRNA expression was prominent in the synovial tissues of rheumatoid arthritis patients, especially in synovial-infiltrated lymphocytes by in situ hybridization. To examine the in vivo relationship of IL-32 and TNFalpha, we prepared an overexpression model mouse of human IL-32beta (BM-hIL-32) by bone marrow transplantation. Splenocytes of BM-hIL-32 mice showed increased expression and secretion of TNFalpha, IL-1beta, and IL-6 especially in response to lipopolysaccharide stimulation. Moreover, serum TNFalpha concentration showed a clear increase in BM-hIL-32 mice. Cell-sorting analysis of splenocytes showed that the expression of TNFalpha was increased in resting F4/80+ macrophages, and the expression of TNFalpha, IL-1beta and IL-6 was increased in lipopolysaccharide-stimulated F4/80+ macrophages and CD11c+ dendritic cells. In fact, BM-hIL-32 mice showed exacerbation of collagen-antibody-induced arthritis and trinitrobenzen sulfonic acid-induced colitis. In addition, the transfer of hIL-32beta-producing CD4+ T cells significantly exacerbated collagen-induced arthritis, and a TNFalpha blockade cancelled the exacerbating effects of hIL-32beta. We therefore conclude that IL-32 is closely associated with TNFalpha, and contributes to the exacerbation of TNFalpha-related inflammatory arthritis and colitis.  相似文献   

4.
The deposition of monosodium urate (MSU) crystals in synovial fluid and tissue leads to gouty arthritis frequently associated with synovial inflammation and bone erosions. The cellular mechanism that links MSU crystals to an increased number of osteoclasts has not yet been fully understood. In a recent issue of Arthritis Research & Therapy Lee and colleagues proposed that bone destruction in chronic gouty arthritis is at least in part dependent on expression by T cells of receptor activator of NF-κB ligand (RANKL). The authors showed that pro-resorptive cytokines such as IL-1β, IL-6, and TNFα are expressed within tophi and stromal infiltrates. In vitro stimulation with MSU crystals revealed monocytes as a source for these cytokines, whereas T cells produce RANKL, the major trigger of osteoclastogenesis.  相似文献   

5.
Hizikia fusiforme is a commonly used food that possesses potent anti-bacterial, anti-fungal, and anti-inflammatory activities. The immunostimulatory activities of aqueous extract of Hizikia fusiforme (HFAE) in RAW 264.7 macrophages and whole spleen cells were investigated. HFAE activated RAW 264.7 macrophages to produce cytokines such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in a dose-dependent manner. In addition, HFAE induced the mRNA expression of TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophages. Moreover, HFAE stimulated proliferation of whole spleen cells and reference mitogen. Taken together, the results demonstrate that HFAE potently activates the immune function by regulating NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophage and promoting spleen cell proliferation.  相似文献   

6.
We previously reported that Treponema denticola, a periodontal pathogen, suppressed the expression of human β-defensins (HBDs) and IL-8 in human gingival epithelial cells. To clarify the receptor(s) involved in the suppression of HBD-2, immortalized gingival epithelial (HOK-16B) cells were infected with live or heat-killed T. denticola for 24 h, and the expression of HBD-2 was examined by real-time RT-PCR. Live T. denticola, but not heat-killed bacteria, suppressed the expression of HBD-2 about 40%. Time courses of suppression revealed that T. denticola suppressed HBD-2 expression only at late time points, which was accompanied with the suppression of TNFα production. Neutralization of TNFα with an antibody abrogated the suppressive effect of T. denticola on HBD-2. Accordingly, heat-killed T. denticola did not suppress TNFα production. Knock-down of toll-like receptor (TLR) 2 via RNA interference reversed the suppressive effect of T. denticola on the expression of HBD-3, but not on the production of TNFα. Collectively, T. denticola suppresses the expression of HBD-2 in gingival epithelial cells by inhibiting the TLR2 axis and TNFα production, which may contribute to the pathogenesis of periodontitis by T. denticola.  相似文献   

7.
 Previously we reported the malignant progression of QR-32, a regressor-type tumor clone, following co-implantation with foreign bodies (gelatin sponge or plastic plate) in normal syngeneic C57BL/6 mice. We also reported that the progression of QR-32 cells by a gelatin sponge was significantly inhibited in the mice administered polysaccharide K (PSK) and that PSK induced an increase of radical scavengers, especially manganese superoxide dismutase (Mn-SOD), locally at the site of tumor tissues. In this study, to reveal the possible mechanism by which PSK induced Mn-SOD in the tumor tissues, we examined the mRNA expression and protein levels of inflammatory cytokines in the tissues. We found that mRNAs of tumor necrosis factor α (TNFα) and interleukin-1α (IL-1α) were considerably expressed in both PSK-treated and phosphate-buffered-saline-treated tumors, and that the mRNA expression and protein level of interferon γ (IFNγ) increased in the tumor tissues treated with PSK. In vitro treatment of QR-32 cells with IFNγ did not significantly increase the production of Mn-SOD; however, the combination of IFNγ with TNFα increased the Mn-SOD production more effectively than did any of the cytokines used singly. Furthermore, we observed the down-regulation of the mRNA expression and protein level of transforming growth factor β (TGFβ) in the tumor tissues treated with PSK, and that in vitro treatment of QR-32 cells with TGFβ decreased the production of Mn-SOD. These results suggest that PSK suppresses the progression of QR-32 cells by increasing Mn-SOD via the modulation of inflammatory cytokines; that is, by decreasing TGF-β and increasing IFN-γ. Received: 7 October 1997 / Accepted: 31 March 1998  相似文献   

8.
The aim of this study was to investigate the cellular and molecular expression of tartrate resistant acid phosphatase (TRAP) as a marker of activated macrophages in macrophage dependent dextran sulphate sodium (DSS)-induced colitis in rats. In normal colon, TRAP+/CX3CR1+ macrophages were located in the upper part of the lamina propria. In the early stage (day 1–3) of acute colitis prior to histopathological changes, induction of the cytokines TNFα, IL-12 and IFNγ occurred concomitant with increased mRNA and enzyme activity of TRAP along with a slight increase of TRAP immunolabelling in macrophages of the upper lamina propria, suggesting induction of TRAP in resident macrophages. Among these cytokines, TNFα up-regulated TRAP expression in the RAW 264.7 monocyte/macrophage cell line. In a later phase (day 7) with fulminant colitis, a massive infiltration of macrophages including recruited TRAP+/CCR2+ cells was observed also in the lower part of the lamina propria as well as in the submuscular layer. Additionally, differentiated cellular expression of pro- and mature TRAP also suggest that mucosal macrophages in the lower part of lamina propria bordering the sub-mucosa provide a source of replenishment of macrophages situated in the upper lamina propria. In conclusion, induction of TRAP provides an early sign of macrophage responsiveness in DSS induced colitis.  相似文献   

9.
10.
 In this study, we report on novel alterations found in rat intracranial (i.c.) tumor-infiltrating T lymphocytes (TIL) that are indicative of T cell defects and death. FACS analysis showed that the cytotoxic T cells (CTL) infiltrating rat T9.F gliomas were CD3ɛ+, αβTCR+, CD8α +, but CD8β . These lymphocytes also stained positive for the B cell-specific marker, CD45RA, as well as Annexin-V, signifying apoptotic changes. Functional and biochemical analyses were performed to assess whether the aberrant phenotype was linked to other defects. When CD8α + TIL were purified and stimulated in vitro, their proliferative capacity was markedly diminished in comparison with CD3+CD8α +CD8β + T cells isolated from the spleens of naive, non tumor-bearing rats. Furthermore, the mean fluorescence intensity of surface CD3ɛ was dramatically reduced in the CD3+CD8α +CD8β TIL population as compared with CD3+CD8α +CD8β + TIL from the same tumor-bearing animal. Biochemical studies revealed that the expression of TCRζ and LAT were reduced in lysates generated from CD8α-purified TIL with respect to CD8α-purified T cells from naive spleen. We believe that these degenerative changes are reflective of chronic T cell receptor ligation, because in vitro culture of rat splenocytes or purified T cells with ConA or anti-CD3 mAb induced the same alterations. In vitro, the downregulation of CD8β could be inhibited by the caspase inhibitor, z-VAD. These results suggest that the aberrant CTL phenotype found in the TIL of glioma-bearing rats may be novel signals for their impending death and degenerating anti-tumor immune function. Received: 27 February 2001 / Accepted: 26 April 2001  相似文献   

11.
IL-10, IL-13, IFN-γ, tumor necrosis factor (TNF)-α, LT-α, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4+ memory T cells, whereas CD4+ cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4+ cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-α. A correlation between expression of IL-10 and CCR7, LT-α and CCR6, IFN-γ and CCR5, and TRANCE and CXCR4 was also detected.  相似文献   

12.
The Na,K-ATPase is a major ion transport protein found in higher eukaryotic cells. The enzyme is composed of two subunits, α and β, and tissue-specific isoforms exist for each of these, α1, α2 and α3 and β1, β2 and β3. We have proposed that an additional α isoform, α4, exists based on genomic and cDNA cloning. The mRNA for this gene is expressed in rats and humans, exclusively in the testis, however the expression of a corresponding protein has not been demonstrated. In the current study, the putative α4 isoform has been functionally characterized as a novel isoform of the Na,K-ATPase in both rat testis and in α4 isoform cDNA transfected 3T3 cells. Using an α4 isoform-specific polyclonal antibody, the protein for this novel isoform is detected for the first time in both rat testis and in transfected cell lines. Ouabain binding competition assays reveal the presence of high affinity ouabain receptors in both rat testis and in transfected cell lines that have identical K D values. Further studies of this high affinity ouabain receptor show that it also has high affinities for both Na+ and K+. The results from these experiments definitively demonstrate the presence of a novel isoform of the Na,K-ATPase in testis. Received: 4 December 1998/Revised: 1 February 1999  相似文献   

13.
 To explore the mechanisms of immuno-modulatory activities of bleomycin, we investigated interferon γ (IFNγ) mRNA expression, tumor necrosis factor α (TNFα) production, nitric oxide (NO) production and macrophage tumoricidal activities in rats bearing KDH-8 hepatoma cells, which secreted a large amount of transforming growth factor β (TGFβ), and these processes in KDH-8 tumor-bearing rats treated with bleomycin. We found that IFNγ mRNA expression, TNFα production, NO production and macrophage cytotoxic activities were lower in the KDH-8-bearing rats than in normal rats. On the other hand, low-dose bleomycin restored the macrophage cytotoxic activities, NO production, IFNγ mRNA expression and TNFα production in the KDH-8-bearing rats. In vitro experiments showed that KDH-8-derived TGFβ decreased the IFNγ mRNA expression and TNFα production in splenocytes, and NO production in peritoneal macrophages. These results suggest that low-dose bleomycin restored the cytokine production and macrophage tumoricidal activities in the KDH-8-bearing rats by decreasing KDH-8-derived TGFβ. Received: 14 October 1996 / Accepted: 22 July 1997  相似文献   

14.
The proinflammatory cytokine tumor necrosis factor-alpha (TNFα) exists naturally in two forms, a 26 kDa transmembrane form (TM-TNFα), and a 17 kDa secretory form (S-TNFα). The biological roles for each of these forms of TNFα in tumor killing have not been completely elucidated. Therefore, in this study, three different recombinant retroviral vectors, wild-type TNFα, solely secretable TNFα mutant, and uncleavable transmembrane TNFα mutant, were constructed by molecular techniques and stably transfected into a murine hepatic carcinoma cell line (H22). TNFα, either secreted in cell culture supernatants by secretable TNFα mutant- or wild-type TNFα-producing tumor cells, or as a treansmembrane form expressed on the cell surface of uncleavable TNFα mutant- or wild-type TNFα-synthesizing tumor cells, was demonstrated to be cytotoxic against the TNF sensitive L929 cell line. The H22 cells transfected with the three different forms of TNFα were shown to kill parental H22 cells in an in vitro cytotoxicity assay [effect/target (E/T) ratio-dependent manner], and their maximal killing rates were ~38–43% at E/T ratio of 5:1. The injection of total 2.5×105 mixed cells containing transfected and parental H22 tumor cells at different ratios into syngeneic mice resulted in the inhibition of tumor growth with a maximal inhibition rates of ~57~72% at E/T ratio of 5:1. A transient weight loss was found in mice bearing solely secretable TNFα mutant producing tumors, whereas no obvious side effects were seen in mice bearing uncleavable TNFα mutant or wild-type TNFα expressing tumors. Finally, we demonstrate that tumors secreting S-TNFα promoted the subsequent infiltration of CD4+ T cells, and to a lesser extent CD8+ T cells, to the tumor site. The TM-TNFα expressing tumors up-regulated Fas (CD95) expression and inhibited the expression of tumor metastasis associated molecule CD44v3. These results suggest that S-TNFα and TM-TNFα kill cancer cells in vivo through different mechanisms of action. We conclude that the non-secreted form of TNFα may be an ideal candidate for cancer gene therapy due to its therapeutic potential and lowered side effect profile.  相似文献   

15.
Interleukin (IL)-15 is a dangerous inflammatory cytokine that induces tumor-necrosis factor-α, IL-1β and inflammatory chemokines. It inhibits self-tolerance mediated by IL-2 mediated activation-induced cell death and facilitates maintenance of CD8+ memory T-cell survival including that of self-directed memory cells. Disordered IL-15 expression has been reported in patients with an array of inflammatory autoimmune diseases. A series of therapeutic agents that inhibit IL-15 action have been introduced, including the soluble IL-15 receptor (IL-15R) α chain, mutant IL-15, and antibodies directed against the IL-15 cytokine and against the IL-2R/IL-15R β subunit used by IL-2 and IL-15.  相似文献   

16.
Previous studies in expression systems have found different ion activation of the Na+/K+-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na+,K+-ATPase activity, and the Na+ affinity of Na+,K+-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na+ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na+,K+-ATPase isoform analysis implied that heterodimers containing the β1 isoform have a higher Na+ affinity than heterodimers containing the β2 isoform. Immunoprecipitation experiments demonstrated that dimers with α1 are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α2 isoform with ouabain suggested that heterodimers containing the α1 isoform have a higher Na+ affinity than heterodimers containing the α2 isoform. The estimated K m values for Na+ are 4.0, 5.5, 7.5 and 13 mM for α1β1, α2β1, α1β2 and α2β2, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na+,K+-ATPase at physiological Na+ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.  相似文献   

17.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

18.
The cytokine transforming growth factor β-1 (TGFβ1), was transfected into a TGFβ1-negative rat colon carcinoma. The growth of isografts of TGFβ1-expressing tumors was compared to that of vector control transfectants. The TGFβ1 transfectant grew significantly more slowly after intrahepatic isografting than did vector control and wild-type tumors. The TGFβ1-transfected tumor tissue had significantly greater infiltration of both CD4+ and CD8+ T lymphocytes than did the vector control tumor. The tumor-infiltrating leukocytes (TIL) from TGFβ1-transfected tumor secreted significantly more of the cytokines interleukin-10 (IL-10) and tumor necrosis factor α (TNFα) than did TIL from the vector control tumor. The TGFβ1 transfectant also demonstrated a significantly slower outgrowth in immunodeficient SCID mice, supporting a non-T-lymphocyte-dependent mechanism for the tumor retardation. In SCID mice, the TGFβ1-transfected tumor demonstrated significantly greater infiltration of both granulocytes and macrophages than did the vector control transfectant. We also demonstrated a direct inhibitory effect of rat TNFα on tumor proliferation in vitro. These results suggest that TGFβ1 induces a local secretion of immunomodulating cytokines and that this may influence monocytes, lymphocytes and granulocytes to retard tumor outgrowth. Received: 7 July 1999 / Accepted: 12 August 1999  相似文献   

19.
Interleukin-7 receptor α chain (IL-7Rα)-derived signals are critical for normal T cell development, mature T cell homeostasis, and longevity of memory T cells. IL-7Rα expression in T cells is dynamically regulated at different developmental and antigen-responding stages. However, the molecular mechanism underlying the dynamic regulation is not completely understood. Here we describe generation of a bacterial artificial chromosome (BAC)-based reporter transgenic mouse strain, which contains 210 kb DNA sequence flanking the Il7r locus. We used in vitro validated EGFP reporter and insulator sequences to facilitate the reporter transgene expression. Consistent with endogenous IL-7Rα expression, the BAC transgene was expressed in mature T cells, a portion of natural killer cells but not in mature B cells. In the thymus, the EGFP reporter and endogenous IL-7Rα showed synchronized silencing in CD4+CD8+ double positive stage, were both upregulated in CD4+ or CD8+ single positive thymocytes, and both continued to be co-expressed in na?ve T cells in the periphery. Upon encountering antigen, the antigen-specific effector CD8+ T cells downregulated both endogenous IL-7Rα and the EGFP reporter, which were upregulated in synchrony in antigen-specific memory CD8 T cells. These results indicate that the BAC-EGFP transgene reports endogenous IL-7Rα regulation with high fidelity, and further suggest that the 210 kb sequence flanking the Il7r locus contains sufficient genetic information to regulate its expression changes in T lineage cells. Our approach thus represents a critical initial step towards systematic dissection of the cis regulatory elements controlling dynamic IL-7Rα regulation during T cell development and cellular immune responses.  相似文献   

20.
 T cell clones (CD4+CD8TCRαβ+γδ) derived from bone marrow transplant recipients were stimulated with phytohaemagglutinin (PHA) +interleukin-2 (IL-2) in the presence of irradiated (50 Gy) peripheral blood mononuclear cells (PBMC) derived from acute leukaemia patients(leukaemic PBMC containing more than 95% blast cells). Leukaemic PBMC could function as accessory cells during mitogenic T cell activation resulting in both T cell proliferation and a broad T cell cytokine response [IL-3, IL-4, IL-10, granulocyte/macrophage-colony-stimulating factor (GM-CSF) tumour necrosis factor α (TNFα) and interferon γ (IFNγ) secretion]. Blockade of IL-1 effects by adding IL-1 receptor antagonist together with PHA+IL-2+leukaemia blasts increased T cell proliferation, whereas IL-6-neutralizing antibodies did not alter T cell proliferation. A qualitatively similar T cell cytokine response and a similar cytokine profile (highest levels detected for GM-CSF and IFNγ) were detected when normal polyclonal T cell lines were stimulated with PHA in the presence of non-irradiated leukaemic PBMC. When leukaemic PBMC derived from 18 acute myelogenous leukaemia patients were cultured with PHA and cells from a polyclonal T cell line, increased concentrations of the T cell cytokines IFNγ and IL-4 were detected for all patients. We conclude that T cell activation resulting in proliferation and a broad cytokine response can take place in the presence of excess acute myelogenous leukaemia blasts. Received: 30 November 1995 / Accepted: 9 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号