首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bauer K 《Neurochemical research》2005,30(10):1339-1345
Carnosine (beta-alanyl-histidine) and homocarnosine (gamma-aminobutyryl-histidine) are major constituents of excitable tissues, brain and skeletal muscles, but their physiological functions are yet unknown. Using primary cell culture systems, synthesis and uptake of carnosine exclusively by glial cells could be demonstrated. Uptake of carnosine was found to be mediated by a high affinity, energy-dependent dipeptide transport system, subsequently identified as the peptide transporter PepT2. With the synthesis of beta-Ala-Lys-Nepsilon-AMCA as a fluorescent reporter molecule, accumulation of this dipeptide derivative could be monitored under viable conditions not only in astroglia cells but also in folliculostellate cells of the anterior pituitary and in gonadal resident macrophages. This reporter dipeptide provided a most valuable tool to identify an intrapituitary communication system by tracing folliculostellate cells in acute slice preparation. Moreover, this substance could also be used to prepare pituitary cell cultures enriched with or depleted of folliculostellate cells that are needed for further studies.  相似文献   

2.
Carrier-mediated uptake of cephalexin in human intestinal cells   总被引:2,自引:0,他引:2  
A transport carrier for cephalexin, a cephalosporin antibiotic, was identified in a human intestinal cell line, HT-29. Uptake via the carrier was inhibited by dipeptides, phe-gly, gly-pro, carnosine, and cefaclor, a close drug analog. Uptake was unaffected by the presence of amino acids. The pH optimum for uptake was 6.2. Drug uptake was not dependent on the presence of sodium and was insensitive to metabolic inhibitors. The efflux of cephalexin was stimulated by extracellular carnosine, indicating counter-transport. Taken together, drug uptake is mediated by a dipeptide transport carrier and not by an amino acid transport carrier. This is the first demonstration of the carrier in an established cell line.  相似文献   

3.
Transport of carnosine by mouse intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
The characteristics of carnosine (beta-alanyl-L-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular greater than intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 +/- 1.4 mM and a Vmax of 2.9 +/- 0.2 nmol/mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-L-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

4.
Transport of [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) [( 3H]Leu-enkephalin) across the blood-brain barrier was studied in the adult guinea pig, by means of vascular perfusion of the head in vivo. The unidirectional transfer constant (Kin) estimated from the multiple-time uptake data for [3H]Leu-enkephalin ranged from 3.62 X 10(-3) to 3.63 X 10(-3) ml min-1 g-1 in the parietal cortex, caudate nucleus, and hippocampus. Transport of [3H]Leu-enkephalin was not inhibited by unlabelled L-tyrosine (the N-terminal amino acid) at a concentration as high as 5 mM, or by the inhibitor of aminopeptidase activity bacitracin (2 mM), suggesting that there was no enzymatic degradation of peptide at the blood-brain barrier. By contrast, 2 mM unlabelled Leu-enkephalin strongly inhibited the unidirectional blood-to-brain transport of [3H]Leu-enkephalin by 74-78% in the parietal cortex, caudate nucleus, and hippocampus. The tetrapeptide tyrosyl-glycyl-glycyl-phenylalanine (without the C-terminal leucine of Leu-enkephalin), at a concentration of 5 mM, caused a moderate inhibition ranging from 15 to 29% in the brain regions studied, whereas the tetrapeptide glycyl-glycyl-phenylalanyl-leucine (without the N-terminal tyrosine) at 5 mM was without effect on Leu-enkephalin transport. Unidirectional brain uptake of Leu-enkephalin was not altered in the presence of naloxone at a concentration as high as 3 mM (1 mg/ml), suggesting that there is no binding of Leu-enkephalin to opioid receptors at the blood-brain barrier. It is concluded that there is a specific transport mechanism for Leu-enkephalin at the blood-brain barrier in the guinea pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Carnosine (beta-Ala-L-His) is known to have the physiological functions of an antioxidant. Although dietary carnosine is thought to be absorbed across intestinal epithelial cells, the mechanism for this absorption is not yet well understood and its function in the intestinal tract is also obscure. The intestinal transport of carnosine was characterized in the present study by using human intestinal Caco-2 cells, and its physiological function in these cells was further examined. The carnosine uptake was proton-dependent, being activated by lowering the apical pH value. Its uptake was significantly inhibited by other dipeptides, whereas it was not inhibited by other amino acids. These characteristics of the carnosine uptake strongly suggest its transport into the cells via peptide transporter 1 (PepT1). Since carnosine has antioxidative activity, we studied its effect on the H2O2-induced secretion of inflammatory cytokines in Caco-2 cells. The H2O2 induced increase in IL-8 secretion was inhibited by a pretreatment with carnosine for 3 h, this inhibition being presented in a dose-dependent manner. These results suggest that carnosine had a protective effect against oxidative stress in intestinal epithelial cells.  相似文献   

6.
The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

7.
In the intact kidney, renal proximal tubule cells accumulate p-aminohippurate (PAH) via a basolateral, probenecid- and sodium-sensitive transport system. Primary cultures of rabbit proximal tubule cells retain sodium-glucose co-transport in culture, but little is known about PAH transport in this system. Purified proximal tubule cells from a rabbit were grown in culture and assessed for PAH and alpha-methyl-D-glucoside uptake capacities as well as proximal tubule marker enzyme activities. Control PAH uptake on collagen-coated filters (20 +/- 3 pmol/mg protein.min; n = 8) was not significantly different from uptake in the presence of 1 mM probenecid (19 +/- 4 pmol/mg protein.min; n = 8). Uptake from the basal side of the cell was 3.9 +/- 0.7 times greater than that from the apical side. In multi-well plate studies, the uptake was significantly reduced by removing sodium from the medium and stimulated by coating the wells with collagen. Glutarate (10 mM) had no effect on the uptake of PAH. Other differentiated proximal tubule characteristics were retained in culture, including the ability to form domes and to transport glucose by a phlorizin-sensitive system. Phlorizin-sensitive 1 mM alpha-methyl-D-glucoside uptake was 134 +/- 42 pmol/mg protein.min (n = 7; P less than 0.02). The proximal tubule marker enzymes alkaline phosphatase and gamma-glutamyltranspeptidase, increased in activity in the cultures after confluence. It was concluded that whereas some differentiated properties were retained during primary culture of rabbit proximal tubule cells, the PAH transport system was selectively lost or modified from that present in the intact kidney.  相似文献   

8.
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2(+/+)) and null (PEPT2(-/-)) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity (K(m) = 34 microM), low capacity (V(max) = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small (K(d) = 0.063 microL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood-cerebrospinal fluid interface.  相似文献   

9.
The present study was undertaken to define the nature of key transport processes for sodium, glucose, proline, and sulfate in primary culture of canine anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cells. Uptake studies using radiolabeled isotopes were performed and Na,K-ATPase activity was determined in cell lysates. At 25 degrees C both ACL and MCL cells showed a significant uptake of 86Rb. Ouabain inhibited Rb uptake by 55% in ACL cells and by 60% in MCL cells. The transport activity of Na,K-ATPase in intact cells was calculated to be 57 and 71 nmol.(mg protein)-1.(15 min)-1, respectively. The enzymatic activity of Na,K-ATPase in cell lysates was observed to be 104 for ACL cells and 121 nmol.(mg protein)-1.(15 min)-1 for MCL cells. Cytochalasin B, a known inhibitor of sodium-independent D-glucose transport, completely inhibited D-glucose uptake in ACL and MCL cells. Removal of Na+ or addition of 10-5 mol/L phlorizin, a potent inhibitor of the sodium-D-glucose cotransporter, did not alter D-glucose uptake, suggesting that glucose entered the cells using a sodium-independent pathway. Both ACL and MCL cells exhibited high sulfate uptake that was not altered by replacement of Na+ by N-methyl-D-glucamine, whereas DIDS, an inhibitor of sulfate/anion exchange abolished sulfate uptake in both cell types. Thus, neither cell type seems to possess a sodium-sulfate cotransport system. Rather, sulfate uptake appeared to be mediated by sulfate/anion exchange. Proline was rapidly taken up by ACL and MCL cells and its uptake was reduced by 85% when Na+ was replaced by N-methyl-D-glucamine, indicating that proline entered the cells via sodium-dependent cotransport systems. The data demonstrate that both ACL and MCL cells possess a highly active sodium pump, a secondary active sodium-proline cotransport system, and sodium-independent transport systems for D-glucose and sulfate.  相似文献   

10.
The uptake of 4-chlorobenzoate (4-CBA) in intact cells of the coryneform bacterium NTB-1 was investigated. Uptake and metabolism of 4-CBA were observed in cells grown in 4-CBA but not in glucose-grown cells. Under aerobic conditions, uptake of 4-CBA occurred with a high apparent affinity (apparent Kt, 1.7 microM) and a maximal velocity (Vmax) of 5.1 nmol min-1 mg of protein-1. At pH values below 7, the rate of 4-CBA uptake was greatly reduced by nigericin, an ionophore which dissipates the pH gradient across the membrane (delta pH). At higher pH values, inhibition was observed only with valinomycin, an ionophore which collapses the electrical potential across the membrane (delta psi). Under anaerobic conditions, no uptake of 4-CBA was observed unless an alternative electron acceptor was present. With nitrate as the terminal electron acceptor, 4-CBA was rapidly accumulated by the cells to a steady-state level, at which uptake of 4-CBA was balanced by excretion of 4-hydroxybenzoate. The mechanism of energy coupling to 4-CBA transport under anaerobic conditions was further examined by the imposition of an artificial delta psi, delta pH, or both. Uptake of 4-CBA was shown to be coupled to the proton motive force, suggesting a proton symport mechanism. Competition studies with various substrate analogs revealed a very narrow specificity of the 4-CBA uptake system. This is the first report of carrier-mediated transport of halogenated aromatic compounds in bacteria.  相似文献   

11.
Thymidine transport was studied in isolated rat hepatocytes. In these cells no phosphorylation of the substrate by thymidine kinase occurred subsequent to transport. Results from studies of the concentration-dependent uptake of thymidine indicated two transport systems with about 80-fold differences in their kinetic constants. These systems were denoted as high affinity [Km = 5.3 micron, V = 0.47 pmol/(10(6) cells X s)] and low affinity systems [Km = 480 micron, V = 37.6 pmol/(10(6) cells X s)]. From intracellular to extracellular distribution ratios of [3H]thymidine it could be concluded that the uptake by the high affinity system was a concentrative process while the transport by the low affinity system was non-concentrative. The uptake of [3H]-thymidine by the high affinity system could only be inhibited by unlabeled thymidine. In contrast, all other nucleosides tested (uridine, 2'-deoxycytidine, and 2'-deoxyguanosine) were equally effective in inhibiting the low affinity system competitively. The results would suggest that in hepatocytes lacking phosphorylation by thymidine kinase, thymidine is taken up by a high and a low affinity system working in tandem. The high affinity system seems to be an active transport process with narrow substrate specificity. Thymidine uptake by the low affinity system is a facilitated diffusion process. This system is considered to be a common transport route for nucleosides of different structures.  相似文献   

12.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

13.
14.
The high affinity, sodium-dependent uptake of proline by rat brain synaptosomes was inhibited by the opioid pentapeptides, Leu-enkephalin and Met-enkephalin. The synaptosomal uptake of other putative neurotransmitter amino acids including glutamic acid, aspartic acid, gamma-aminobutyric acid, and taurine was not altered in the presence of enkephalins. The uptake of a neuroinactive amino acid, leucine, was also unaffected by enkephalins. The extent of proline uptake was half-maximal at a Leu-enkephalin concentration of 1 microM. Both the initial rate of transport and the overall capacity for proline accumulation were reduced. The effect of the enkephalins was vectorial since carrier-mediated efflux of proline was not altered in the presence of enkephalins. Morphine and the opioid peptides, dynorphin and beta-endorphin, were without effect on proline uptake. The inhibition of proline uptake by enkephalins was not diminished by prior incubation of the synaptosomal preparation with naloxone; however, the inhibition was attenuated by 1-butanol. The des-tyrosyl fragments of the enkephalins were as inhibitory as the intact pentapeptides. A modified enkephalin ([D-Ser2]Leu-enkephalin-Thr) with selective affinity for the delta subclass of enkephalin receptor was effective in inhibiting proline uptake. On the basis of the selectivity of these effects, we propose that there is a specific population of nerve endings in the cerebral cortex that contains both a proline-transport system and binding sites for Leu- and Met-enkephalin and furthermore, that these binding sites may be related to the putative delta receptor.  相似文献   

15.
Uptake of leucine, lysine, and arginine was predominantly Na(+)-independent in mouse conceptuses through the 8-cell stage of development, and two components of saturable transport were detected for each of these amino acids. Uptake of cationic substrates from solutions near 1 microM was inhibited most strongly by bulky cationic and zwitterionic amino acids whose carbon skeletons do not branch at the alpha or beta positions. By this criterion, system b0,+ accounted for most of the Na(+)-independent arginine and lysine transport in eggs and conceptuses throughout preimplantation development. A small, leucine-resistant, cation-preferring component of amino acid transport was also detected in these cells. Leucine uptake was inhibited most strongly by bicyclic, branched-chain or benzenoid, zwitterionic amino acids in eggs and conceptuses prior to formation of blastocysts. Therefore, it appeared to be taken up mainly by system L, while system b0,+ accounted for a smaller portion of leucine uptake during this developmental period. In blastocysts, in contrast, system L was less conspicuous, and system b0,+ was primarily responsible for Na(+)-independent leucine uptake. The Vmax values for transport of amino acids by system b0,+ increased by up to 30-fold in conceptuses between the 1-cell and blastocyst stages. In contrast, the Vmax value for leucine transport via system L decreased while the Km value increased between these two developmental stages. Although several explanations for these changes are possible, we favor the hypothesis that the density of system L transport sites in plasma membranes decreases while the number of system b0,+ sites increases during development of blastocysts from 1-cell conceptuses.  相似文献   

16.
The kinetics of sulfobromophthalein uptake by rat liver sinusoidal vesicles   总被引:3,自引:0,他引:3  
The kinetics of bromo[35S]sulfophthalein (35S-BSP) binding by and uptake across the hepatocyte sinusoidal membrane were investigated using isolated rat liver sinusoidal membrane vesicles containing K+ as the principal internal inorganic cation. Uptake of 35S-BSP into vesicles was found to be temperature dependent, with maximum uptake between 35 and 40 degrees C; only binding occurred at or below 15 degrees C. Uptake at 37 degrees C was saturable and resolvable by Eadee-Hofstee analysis into two components: one with high affinity (Km = 53.1 microM) but low capacity, and the second of low affinity (Km = 1150 microM) but high capacity. By pre- or post-incubation, respectively, with unlabelled BSP, trans-stimulation and counter transport of 35S-BSP could also be demonstrated in these vesicles. Uptake was inhibited competitively using 5 microM Rose bengal and 10 microM indocyanine green, and non-competitively using 10 microM DIDS. Taurocholate did not inhibit uptake, and actually enhanced transport at concentrations greater than or equal to 250 microM. Imposition of inwardly directed inorganic ion gradients resulted in the enhancement of 35S-BSP transport when chloride ions were part of this gradient, irrespective of the cation employed whereas there was no apparent cation effect. However, substitution of 10 mM Na+ for 10 mM K+ as the internal cation resulted in a significant increase in uptake in the presence of external K+ as compared to Na+ gradients. This effect was not observed when 10 mM Tris+ was employed as the internal cation. The kinetics of 35S-BSP uptake by isolated sinusoidal membrane vesicles are indicative of facilitated transport. While the observed inorganic ion effects suggest a possible electrogenic component, the driving forces for hepatic BSP uptake remain uncertain. Isolated sinusoidal membrane vesicles provide a useful technique for studying hepatic uptake processes independent of circulatory or subsequent cellular phenomena.  相似文献   

17.
Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe(3+), but uptake was also noted for Ca(2+), Pb(2+), Ba(2+), and Mn(2+). Uptake was not observed with the Mg(2+), Ni(2+), or Co(2+) cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca(2+), Ba(2+), Sr(2+)) and CitM (Mg(2+), Ni(2+), Mn(2+), Co(2+), Zn(2+)) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe(3+)-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca(2+)-citrate, Fe(3+)-citrate, and Pb(2+)-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-beta-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe(3+)-citrate and Ca(2+)-citrate complexes, but not the Pb(2+)-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate.  相似文献   

18.
The inducible glutamate uptake system in Corynebacterium glutamicum (Kr?mer, R., Lambert, C., Hoischen, C. & Ebbighausen, H., preceding paper in this journal) was characterized with respect to its mechanism and energy coupling. All possible secondary active uptake mechanisms can be excluded. Glutamate transport is not coupled to the translocation of H+, Na+ or K+ ions. Although changes in membrane potential and uptake activity cannot completely be separated, no correlation between these two parameters is observed. The uptake of glutamate resembles a primary active, ATP-dependent transport mechanism in several respects. (a) The substrate affinity is very high (1.3 microM). (b) Accumulation of glutamate reaches values of greater than 2.10(5), at least as high as those reported for binding-protein-dependent systems in Gram-negative bacteria. (c) The uptake is unidirectional. Even after complete deenergization, the accumulation ratio was not significantly reduced. (d) The rate of glutamate uptake is directly correlated to the cytosolic ATP content and also to the ATP/ADP ratio. This is shown by varying internal ATP by different procedures applying inhibitors (NaCN, dicyclohexyl carbodiimide), uncouplers (carbonyl m-chlorophenylhydrazone), ionophores (valinomycin), and even by shifting the cells to anaerobiosis. Uptake is not promoted by cytosolic ATP levels below 1.5 mM, the maximum uptake rate is reached at 4-5 mM ATP.  相似文献   

19.
Amine uptake into intact mast cell granules in vitro   总被引:1,自引:0,他引:1  
R I Ludowyke  D Lagunoff 《Biochemistry》1986,25(20):6287-6293
Histamine, the principal amine of rat peritoneal mast cells, is taken up into isolated granules with intact membranes. Uptake is pH- and concentration-dependent and is not stimulated by the addition of Mg2+-ATP. The saturable uptake has a Km of 91.1 microM and a Vmax of 95.4 pmol (mg of protein)-1 min-1. Uptake is abolished by 5 mM ammonium ion. 5-HT, the other endogenous amine of the granules, and dopamine and tyramine, which do not occur naturally in rat mast cells, each competitively inhibits [3H]-histamine uptake with Ki's close to 1 microM. Reserpine, a putative amine carrier blocker, inhibits uptake at nanomolar concentrations. At high concentrations, uptake of [3H]-5-HT is nonsaturable; at low concentrations, a saturable component is observed with a Km of 1.6 microM. Uptake of [3H]-5-HT is not enhanced by Mg2+-ATP. It is pH-dependent but with a lower apparent pKa than that of histamine. [3H]-5-HT uptake can be completely inhibited by ammonium ions. Amine inhibition of [3H]-5-HT gives nonlinear Dixon plots, and high concentrations of the competing amines or reserpine cannot completely block uptake. We propose a model consistent with these results in which amine uptake occurs by several distinct saturable transport systems. According to the model, histamine is transported by a single system, which also transports 5-HT and dopamine. 5-HT and dopamine are transported by one or more other systems.  相似文献   

20.
Naphthalene uptake by a Pseudomonas fluorescens isolate   总被引:1,自引:0,他引:1  
The uptake of naphthalene has been investigated in the metabolizing cells of Pseudomonas fluorescens utilizing [1-14C]naphthalene. The uptake displayed an affinity constant (Kt) of 11 microM and a maximal velocity (Vmax) of 17 nmol.h-1.mg-1 cellular dry weight. Naphthalene uptake was not observed in a mutant strain, TG-5, which was unable to utilize naphthalene as a sole source of carbon for growth. Uptake was significantly inhibited (approximately 90%) by the presence of growth-inhibiting levels of either azide or 2,4-dinitrophenol and was sensitive to the presence of structural analogues of naphthalene. The intracellular levels of ATP were not significantly reduced by the presence of either azide or 2,4-dinitrophenol. The presence of alpha-naphthol was found to noncompetitively inhibit naphthalene uptake, displaying a Ki of 0.041 microM. It is concluded that the first step in the utilization of naphthalene by Pseudomonas fluorescens is its transport into the cell by a specific energy-linked transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号