首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exchange factor Ras-GRF1, also called CDC25Mm, couples calcium signaling and G-protein-coupled receptors to Ras and downstream effectors. Here we show that when expressed in different cell lines Ras-GRF1 strongly enhances the level of active Ras (Ras-GTP) and the activity of mitogen-activated protein kinases (MAPK). Moreover, in NIH 3T3 fibroblasts it potentiates the effect of lysophosphatidic acid (LPA) on Ras protein and MAPK activity. Calmodulin and cytosolic free calcium are essential for Ras and MAPK activation induced by LPA and mediated by Ras-GRF1, as shown by the finding that BAPTA-AM, an intracellular calcium chelator, and calmodulin inhibitors completely abolished this effect. This report demonstrates the relevance of calmodulin in addition to calcium for the response of Ras-GRF1 to LPA.  相似文献   

2.
The Ras-GRF1 exchange factor, which is regulated by increases in intracellular calcium and the release of G beta gamma subunits from heterotrimeric G proteins, plays a critical role in the activation of neuronal Ras. Activation of G protein-coupled receptors stimulates an increase in the phosphorylation of Ras-GRF1 at certain serine residues. The first of these sites to be identified, Ser(916) in the mouse sequence (equivalent to Ser(898) in the rat sequence), is required for full activation of the Ras exchange factor activity of Ras-GRF1 by muscarinic receptors. We demonstrate here that Ras-GRF1 is highly expressed in rat brain compared with the Sos exchange factor and that there is an increase in incorporation of (32)P into Ser(898) of brain Ras-GRF1 following activation of protein kinase A. Phosphorylation of Ras-GRF1 at Ser(916) is also required for maximal induction of Ras-dependent neurite outgrowth in PC12 cells. A novel antibody (termed 2152) that selectively recognizes Ras-GRF1 when it is phosphorylated at Ser(916/898) confirmed the regulated phosphorylation of Ras-GRF1 by Western blotting in both model systems of transfected COS-7 and PC12 cells and also of the endogenous protein in rat forebrain slices. Indirect confocal immunofluorescence of transfected PC12 cells using antibody 2152 demonstrated reactivity only under conditions in which Ras-GRF1 was phosphorylated at Ser(916/898). Confocal immunofluorescence of cortical slices of rat brain revealed widespread and selective phosphorylation of Ras-GRF1 at Ser(898). In the prefrontal cortex, there was striking phosphorylation of Ras-GRF1 in the dendritic tree, supporting a role for Ras activation and signal transduction in neurotransmission in this area.  相似文献   

3.
The Ras-GRF1 exchange factor is strongly implicated in the control of neuronal Ras. The activity of Ras-GRF1 is regulated by increases in intracellular calcium and the release of Gbetagamma subunits from heterotrimeric G-proteins. Increases in Ras-GRF1 activity toward Ras that are stimulated by receptors coupled to G-proteins are associated with enhanced phosphorylation of Ras-GRF1 on one or more serine residues. Co-expression of Ras-GRF1 with subtype 1 human muscarinic receptors in COS-7 cells allowed mapping of a carbachol-stimulated phosphorylation site to a region composed of residues 916-976. Site-directed mutagenesis replaced each of the serine residues within this region with alanine and demonstrated that serine 916 is a major site of in vivo phosphorylation of Ras-GRF1 in both COS-7 cells and NIH-3T3 fibroblasts. Serine 916 was a substrate for protein kinase A both in vivo and in vitro, suggesting a novel link between the cAMP and Ras signaling systems. Carbachol-dependent phosphorylation of serine 916 occurred through a protein kinase A-independent pathway, however. Full-length Ras-GRF1 that contains an alanine 916 mutation was only partially activated by carbachol, suggesting that phosphorylation at residue 916 is necessary for full activation. Phosphorylation of serine 916 in response to forskolin treatment did not, however, increase the activity of Ras-GRF1, indicating that it is not sufficient for activation.  相似文献   

4.
Ras-GRF1/CDC25(Mm) has been implicated as a Ras-guanine nucleotide exchange factor (GEF) expressed in brain. Ras-GEF activity of Ras-GRF1 is augmented in response to Ca(2+) influx and G protein betagamma subunit (Gbetagamma) stimulation. Ras-GRF1 also acts as a GEF toward Rac, but not Rho and Cdc42, when activated by Gbetagamma-mediated signals. Tyrosine phosphorylation of Ras-GRF1 is critical for the induction of Rac-GEF activity as evidenced by inhibition by tyrosine kinase inhibitors. Herein, we show that the nonreceptor tyrosine kinase Src phosphorylates Ras-GRF1, thereby inducing Rac-GEF activity. Ras-GRF1 transiently expressed with v-Src was tyrosine-phosphorylated and showed significant GEF activity toward Rac, but not Rho and Cdc42, which was comparable with that induced by Gbetagamma. In contrast, Ras-GEF activity remained unchanged. The recombinant c-Src protein phosphorylated affinity-purified glutathione S-transferase-tagged Ras-GRF1 in vitro and thereby elicited Rac-GEF activity. Taken together, tyrosine phosphorylation by Src is sufficient for the induction of Rac-GEF activity of Ras-GRF1, which may imply the involvement of Src downstream of Gbetagamma to regulate Ras-GRF1.  相似文献   

5.
6.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.  相似文献   

7.
8.
Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood. We show here that activated ACK1, a nonreceptor tyrosine kinase that belongs to the focal adhesion kinase family, causes tyrosine phosphorylation of Ras-GRF1. On the other hand, kinase-deficient ACK1 exerted no effect. GEF activity of Ras-GRF1 toward Ha-Ras, as defined by in vitro GDP binding and release assays, was augmented after tyrosine phosphorylation by ACK1. In contrast, GEF activity toward Rac1 remained latent, implying that ACK1 does not represent a tyrosine kinase that acts downstream of G protein-coupled receptors. Consistent with enhanced Ras-GEF activity, accumulation of the GTP-bound form of Ras within the cell was shown through the use of Ras-binding domain pull-down assays. Furthermore, Ras-dependent activation of ERK2 by Ras-GRF1 was enhanced following co-expression of activated ACK1. These results implicate ACK1 as an upstream modulator of Ras-GRF1 and suggest a signaling cascade consisting of Cdc42, ACK1, Ras-GRF1, and Ras in neuronal cells.  相似文献   

9.
10.
Sos and Ras-GRF are two families of guanine nucleotide exchange factors that activate Ras proteins in cells. Sos proteins are ubiquitously expressed and are activated in response to cell-surface tyrosine kinase stimulation. In contrast, Ras-GRF proteins are expressed primarily in central nervous system neurons and are activated by calcium/calmodulin binding and by phosphorylation. Although both Sos1 and Ras-GRF1 activate the Ras proteins Ha-Ras, N-Ras, and Ki-Ras, only Ras-GRF1 also activates the functionally distinct R-Ras GTPase. In this study, we determined which amino acid sequences in these exchange factors and their target GTPases are responsible for this signaling specificity difference. Analysis of chimeras and individual amino acid exchanges between Sos1 and Ras-GRF1 revealed that the critical amino acids reside within an 11-amino acid segment of their catalytic domains between the second and third structurally conserved regions (amino acids (aa) 828-838 in Sos1 and 1057-1067 in Ras-GRF1) of Ras guanine nucleotide exchange factors. In Sos1, this segment is in helix B, which is known to interact with the switch 2 region of Ha-Ras. Interestingly, a similar analysis of Ha-Ras and R-Ras chimeras did not identify the switch 2 region of Ha-Ras as encoding specificity. Instead, we found a more distal protein segment, helix 3 (aa 91-103 in Ha-Ras and 117-129 in R-Ras), which interacts instead primarily with helix K (aa 1002-1016) of Sos1. These findings suggest that specificity derives from the fact that R-Ras-specific amino acids in the region analogous to Ha-Ras helix 3 prevent a functional interaction with Sos1 indirectly, possibly by preventing an appropriate association of its switch 2 region with helix B of Sos1. Although previous studies have shown that helix B of Sos1 and helix 3 of Ha-Ras are involved in promoting nucleotide exchange on Ras proteins, this study highlights the importance of these regions in establishing signaling specificity.  相似文献   

11.
We have recently shown that the neuronal exchange factor p140 Ras-GRF becomes activated in vivo in response to elevated calcium levels [C. L. Farnsworth, N. W. Freshney, L. B. Rosen, A. Ghosh, M. E. Greenberg, and L. A. Feig, Nature (London) 376:524-527, 1995]. Activation is mediated by calcium-induced calmodulin binding to an IQ domain near the N terminus of Ras-GRF. Here we show that the adjacent N-terminal pleckstrin homology (PH), coiled-coil, and IQ domains function cooperatively to allow Ras-GRF activation. Deletion of the N-terminal PH domain redistributes a large percentage of Ras-GRF from the particulate to the cytosolic fraction of cells and renders the protein insensitive to calcium stimulation. A similar cellular distribution and biological activity are observed when only the core catalytic domain is expressed. Although the PH domain is necessary for particulate association of Ras-GRF, it is not sufficient for targeting the core catalytic domain to this cellular location. This requires the PH domain and the adjacent coiled-coil and IQ sequences. Remarkably, this form of Ras-GRF is constitutively activated. The PH and coiled-coil domains must also perform an additional function, since targeting to the particulate fraction of cells is not sufficient to allow Ras-GRF activation by calcium. A Ras-GRF mutant containing the PH domain from Ras-GTPase-activating protein in place of its own N-terminal PH domain localizes to the particulate fraction of cells but does not respond to calcium. Similar phenotypes are seen with mutant Ras-GRFs containing point mutations in either the PH or coiled-coil domain. These findings argue that the N-terminal PH, coiled-coil, and IQ domains of Ras-GRF function together to connect Ras-GRF to multiple components in the particulate fractions of cells that are required for responsiveness of the protein to calcium signaling.  相似文献   

12.
The Ras-GRF1 exchange factor has regulated guanine nucleotide exchange factor (GEF) activity for H-Ras and Rac1 through separate domains. Both H-Ras and Rac1 activation have been linked to synaptic plasticity and thus could contribute to the function of Ras-GRF1 in neuronal signal transduction pathways that underlie learning and memory. We defined the effects of Ras-GRF1 and truncation mutants that include only one of its GEF activities on the morphology of PC12 phaeochromocytoma cells. Ras-GRF1 required coexpression of H-Ras to induce morphological effects. Ras-GRF1 plus H-Ras induced a novel, expanded morphology in PC12 cells, which was characterized by a 10-fold increase in soma size and by neurite extension. A truncation mutant of Ras-GRF1 that included the Ras GEF domain, GRFdeltaN, plus H-Ras produced neurite extensions, but did not expand the soma. This neurite extension was blocked by inhibition of MAP kinase activation, but was independent of dominant-negative Rac1 or RhoA. A truncation mutant of Ras-GRF1 that included the Rac GEF domains, GRFdeltaC, produced the expanded phenotype in cotransfections with H-Ras. Cell expansion was inhibited by wortmannin or dominant-negative forms of Rac1 or Akt. GRFdeltaC binds H-Ras.GTP in both pulldown assays from bacterial lysates and by coimmunoprecipitation from HEK293 cells. These results suggest that coordinated activation of H-Ras and Rac1 by Ras-GRF1 may be a significant controller of neuronal cell size.  相似文献   

13.
The function of the Ras guanine nucleotide exchange factor Ras-GRF/cdc25(Mn) is subject to tight regulatory processes. We have recently shown that the activation of the Ras/MAPK pathway by Ras-GRF is controlled by the Rho family GTPase Cdc42 through still unknown mechanisms. Here, we report that retaining Cdc42 in its GDP-bound state by overexpressing Rho-GDI inhibits Ras-GRF-mediated MAPK activation. Conversely, Ras-GRF basal and LPA- or ionomycin-stimulated activities were unaffected by a constitutively active GTP-bound Cdc42. Moreover, the Cdc42 downstream effectors MLK3, ACK1, PAK1, and WASP had no detectable influence on Ras-GRF-mediated MAPK activation. In contrast, promoting GDP release from Cdc42 with the Rho family GEF Dbl or with ionomycin suppressed the restraint exerted by Cdc42 on Ras-GRF activity. We conclude that Cdc42-GDP inhibits Ras-GRF-induced MAPK activation, but neither Cdc42-GTP nor the Cdc42 downstream effectors affect Ras-GRF performance. Interestingly, the loss of the GDP-bound state by Cdc42 abolishes its inhibitory effects on Ras-GRF function. These results suggest that the Cdc42 mechanism of action may not be solely restricted to activation of downstream signaling cascades when GTP-loaded. Furthermore, the GDP-bound form may be acting as an inhibitory molecule down-modulating parallel signaling routes such as the Ras/MAPK pathway.  相似文献   

14.
The Ras guanine-nucleotide exchange factor Ras-GRF/Cdc25(Mn) harbors a complex array of structural motifs that include a Dbl-homology (DH) domain, usually found in proteins that interact functionally with the Rho family GTPases, and the role of which is not yet fully understood. Here, we present evidence that Ras-GRF requires its DH domain to translocate to the membrane, to stimulate exchange on Ras, and to activate mitogen-activated protein kinase (MAPK). In an unprecedented fashion, we have found that these processes are regulated by the Rho family GTPase Cdc42. We show that GDP- but not GTP-bound Cdc42 prevents Ras-GRF recruitment to the membrane and activation of Ras/MAPK, although no direct association of Ras-GRF with Cdc42 was detected. We also demonstrate that catalyzing GDP/GTP exchange on Cdc42 facilitates Ras-GRF-induced MAPK activation. Moreover, we show that the potentiating effect of ionomycin on Ras-GRF-mediated MAPK stimulation is also regulated by Cdc42. These results provide the first evidence for the involvement of a Rho family G protein in the control of the activity of a Ras exchange factor.  相似文献   

15.
16.
Calcium is a universal intracellular signaling molecule. Through variations in both the amplitude and frequency of intracellular calcium increases, the same calcium ion can elicit different responses. In this report, we investigated the effect of a calcium transient, lasting 2-5 min, on alterations in the phosphorylation state of the cytoskeletal protein, tau. Transient increases in calcium result in a prolonged (1-4 h) approximately 60% increase in tau phosphorylation at the Tau-1 epitope. These increases in tau phosphorylation appear to be more dependent upon the duration of the increase in intracellular calcium and less on the amplitude. The calcium-induced increases in tau phosphorylation are not dependent upon protein synthesis, nor are protein kinase C or calcium/calmodulin-dependent protein kinase II involved in the response. However, the calcium-induced increase in tau phosphorylation was inhibited by lithium, a noncompetitive inhibitor of glycogen synthase kinase-3beta (GSK-3beta), and by the tyrosine kinase inhibitor, genistein. Furthermore, transient increases in calcium resulted in a prolonged increase in GSK-3beta tyrosine phosphorylation concomitant with the increase in tau phosphorylation. Therefore, this study is the first to indicate that transient increases in intracellular calcium result in increased tyrosine phosphorylation and activation of GSK-3beta which subsequently results in a sustained increase in the phosphorylation state of tau.  相似文献   

17.
Lysophosphatidic acid (LPA) is a lysophospholipid that is produced during thrombin stimulation of platelets, which can promote platelet aggregation. The mechanism of the effect of LPA was explored in normal platelets and in platelets from a patient with a storage pool deficiency (SPD). A comparison with other lysophospholipids showed that only LPA exerted significant effects to cause or potentiate platelet aggregation. Aspirin, an inhibitor of prostaglandin endoperoxide synthetase, had little effect on LPA-induced aggregation, but completely blocked LPA-induced serotonin secretion. LPA also promoted phosphorylation of myosin light chain (MLC), a 47 kilodalton (kDa) protein, and actin-binding protein. Aspirin significantly inhibited the phosphorylation of the 47-kDa and actin-binding proteins at 3-8 min after the addition of LPA, but had no effect on protein phosphorylation within the 1st min and had no significant effect on MLC phosphorylation. In SPD platelets, aspirin partially inhibited both aggregation and phosphorylation of the 47-kDa protein (less than 30% inhibition) and MLC (less than 40% inhibition) at time points of 1 min or less. The addition of ADP to SPD platelets enhanced the LPA response in platelets either pretreated or not pretreated with aspirin. Studies with SPD platelets indicate that thromboxane and secreted ADP contribute to, but are not necessary for, LPA-induced aggregation and phosphorylation. A23187 (a calcium ionophore) and LPA showed some selectivity to promote MLC as opposed to the 47-kDa protein phosphorylation, particularly at low concentrations of agonists and at earlier time points. The protein phosphorylation changes seen are consistent with a role for MLC phosphorylation in the granule centralization promoted with LPA.  相似文献   

18.
19.
Rac activation is a key step in chemotaxis of hematopoietic cells, which is both positively and negatively regulated by receptors coupled to heterotrimeric G proteins. P-Rex1, a Rac-specific guanine nucleotide exchange factor, is dually activated by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) and the Gbetagamma subunits of heterotrimeric G proteins. This study explored the regulation of P-Rex1 by phosphorylation with the cAMP-dependent protein kinase (protein kinase A) in vitro and by G(i)- and G(s)-coupled receptors in HEK293T cells. P-Rex1 isolated from Sf9 and HEK293T cells migrates as two distinct bands that are partially phosphorylated. Phosphorylation of P-Rex1 with protein kinase A (PKA) inhibits the PIP(3)- and Gbetagamma-stimulated P-Rex1 guanine nucleotide exchange activity on Rac. The guanine nucleotide exchange factor activity of three different forms of P-Rex1 (native Sf9, de-phosphorylated, and phosphorylated) was examined in the presence of PIP(3) and varying concentrations of Gbeta(1)gamma(2). Gbeta(1)gamma(2) was 47-fold less potent in activating the phosphorylated form of P-Rex1 compared with the de-phosphorylated form. HEK293T cells expressing P-Rex1 were labeled with (32)P and stimulated with lysophosphatidic acid (LPA) to release Gbetagamma or isoproterenol to activate PKA. Treatment with isoproterenol or S(p)-cAMPS, a potent activator of PKA, increased the incorporation of (32)P into P-Rex1. LPA increased the amount of GTP-bound Rac in the cells and isoproterenol reduced basal levels of GTP-bound Rac and blunted the effect of LPA. Treatment of the cells with S(p)-cAMPS also reduced the levels of GTP-bound Rac. These results outline a novel mechanism for G(s)-linked receptors to regulate the function of P-Rex1 and inhibit its function in cells.  相似文献   

20.
Lysophosphatidic acid (LPA) is a natural phospholipid with multiple biological functions. We show here that LPA induces phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3), a multifunctional serine/threonine kinase. The effect of LPA can be reconstituted by expression of Edg-4 or Edg-7 in cells lacking LPA responses. Compared to insulin, LPA stimulates only modest phosphatidylinositol 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt) that does not correlate with the magnitude of GSK-3 phosphorylation induced by LPA. PI3K inhibitors block insulin- but not LPA-induced GSK-3 phosphorylation. In contrast, the effect of LPA, but not that of insulin or platelet-derived growth factor (PDGF), is sensitive to protein kinase C (PKC) inhibitors. Downregulation of endogenous PKC activity selectively reduces LPA-mediated GSK-3 phosphorylation. Furthermore, several PKC isotypes phosphorylate GSK-3 in vitro and in vivo. To confirm a specific role for PKC in regulation of GSK-3, we further studied signaling properties of PDGF receptor beta subunit (PDGFRbeta) in HEK293 cells lacking endogenous PDGF receptors. In clones expressing a PDGFRbeta mutant wherein the residues that couple to PI3K and other signaling functions are mutated with the link to phospholipase Cgamma (PLCgamma) left intact, PDGF is fully capable of stimulating GSK-3 phosphorylation. The process is sensitive to PKC inhibitors in contrast to the response through the wild-type PDGFRbeta. Therefore, growth factors, such as PDGF, which control GSK-3 mainly through the PI3K-PKB/Akt module, possess the ability to regulate GSK-3 through an alternative, redundant PLCgamma-PKC pathway. LPA and potentially other natural ligands primarily utilize a PKC-dependent pathway to modulate GSK-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号