首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time course of covalent binding of polyoma viral DNA to mouse DNA was followed in mouse embryo cells that had been grown prior to infection in the presence of 5-bromodeoxyuridine. Density-labeled (HL) mouse DNA was separated from free polyoma DNA by CsCl isopycnic centrifugation. Polyoma DNA sequences present in HL mouse DNA were detected by hybridization with radioactive cRNA synthesized in vitro. In reconstruction experiments, the limit of detection was found to be, on the average, about 0.5 genome equivalent (g.e.) of polyoma DNA per cell. To find conditions for the isolation of HL mouse DNA and for its complete separation from free polyoma DNA, cultures infected at 4 degrees C were used. HL mouse DNA extracted with sodium dodecyl sulfate and high salt concentrations (5 to 6 M CsCl) and then purified by three consecutive CsCl density gradient centrifugations was free from detectable amounts of polyoma DNA, whereas HL mouse DNA extracted with chloroform and phenol and purified in the same way always contained contaminating, noncovalently bound polyoma DNA. In lytically infected bromodeoxyuridine-prelabeled mouse embryo cultures, polyoma DNA bound to HL mouse DNA that had been extracted by the sodium dodecyl sulfate-CsCl procedure was first detected in small amounts (1 to 2 g.e. per cell) at 10 h after infection. In cultures incubated with medium containing thymidine (5 mug/ml), 4 to 6 g.e. of polyoma DNA per cell was detected at 14 and 18 h after infection. In these samples, practically all viral DNA was bound to high-molecular-weight HL mouse DNA. In cultures incubated with normal medium (no additions) and extracted between 17 and 20 h after infection, 20 to 350 g.e. of polyoma DNA per cell banded with HL mouse DNA. However, when DNA of one of these samples was subfractionated by sodium dodecyl sulfate-salt precipitation prior to isolation of HL mouse DNA, about 80% of the viral DNA banding at increased density was present in the low-molecular-weight DNA fraction. This observation suggests that in normal medium some progeny viral DNA of increased density was synthesized. Covalent binding of polyoma DNA to density-labeled mouse DNA was demonstrated by alkaline CsCl density gradient centrifugation: nearly equal amounts of polyoma DNA were found in the H and L strands, respectively, as is expected for linear integration of viral DNA. The results lead to the conclusions that (i) early polyoma mRNA is transcribed from free parental viral DNA; (ii) covalent linear integration is first detectable at the time when tumor (T)-antigen is synthesized; and (iii) only few copies (<10 g.e./cell) become integrated between 10 and 18 h after infection, i.e., during the period when cellular and viral DNA replication starts in individual cells.  相似文献   

2.
On CsCl isopycnic centrifugation of the DNA extracted from secondary mouse embryo (ME) cultures grown in the presence of 5-bromodeoxyuridine (BUdR) and 5-fluorodeoxyuridine (FUdR) for 40 h, 10 to 25% of the DNA was found to be unsubstituted, 70 to 80% was bromouracil-hybrid DNA, and 5 to 10% was heavy DNA. These results together with cell number determinations, autoradiography, and Feulgen microspectrophotometry revealed three types of cells in these cultures: (i) 60 to 80% of the cells replicated their DNA once, divided, and then stopped mitotic activity, (ii) 5 to 10% were going through a second round of DNA replication; whereas (iii) 10 to 30% did not replicate DNA during the BUdR-FUdR exposure. After the transfer of these cultures to normal medium (without BUdR-FUdR), up to 20% of the cells resumed DNA synthesis asynchronously within 60 h, but no increase in cell number was observed. BUdR-FUdR-treated cultures, which were infected with polyoma virus in the absence of the thymidine analogues, supported a lytic infection to the same extent as did untreated ME cultures. This was concluded from the similar number of cells, which were induced to synthesize DNA, from the similar replication rate of the viral DNA, from the similar number of cells containing polyoma capsid proteins, and from the similar yields of progeny virus determined by hemagglutination and plaque formation. Thus, BUdR-prelabeled ME cultures are suitable for the investigation of interactions of the polyoma and mouse genomes during the lytic infection.  相似文献   

3.
Türler H 《Journal of virology》1975,15(5):1158-1167
In primary mouse kidney cell cultures infected with polyoma virus, the processes leading to virion and pseudovirion formation were studied. By photometric DNA quantitation, we followed the kinetics of mouse and polyoma DNA synthesis and the formation of low-molecular-weight fragmented mouse DNA (mouse f-DNA). Virus was harvested at different times and analyzed for its proportion of pseudovirions. The following correlations between the intracellular events and the production of virions and pseudovirions were found. (i) Syntheses of cellular and viral DNA were closely linked, both in time and in rates of synthesis. (ii) An increase of mouse f-DNA could only be detected several hours after the onset of mouse and polyoma DNA replication; its formation coincided in time with the appearance of progeny virus. (iii) The proportion of pseudovirions was not dependent on the amount of mouse f-DNA formed, but seemed to be inversely related to the amount of viral DNA synthesized. This was borne out by experiments in which DNA synthesis was partially inhibited by mitomycin C or after a synchronized onset of DNA replication. Under these conditions, virus preparations with a two- to threefold increased proportion of pseudovirions were obtained as compared with those from uninhibited cultures. Virus isolated from the remaining monolayer always had a higher proportion of pseudovirions than virus isolated at the same time from the supernatant medium only; also, the proportion of pseudovirions increased slightly with time after infection. Thus, according to the experimental conditions used, polyoma virus preparations with a low (10 to 20%) or a high (60 to 80%) proportion of pseudovirions can be obtained.  相似文献   

4.
Ultraviolet irradiation and actinomycin D impair the capacity of mouse embryo (ME) cells to support the replication of polyoma virus, but not of encephalomyocarditis (EMC) virus. The loss in capacity for polyoma virus synthesis was an “all-or-none” effect and followed closely upon the loss in cellular capacity for clone formation. Cells treated with either agent produced polyoma “T” antigen, but did not synthesize polyoma structural protein. Infection of untreated ME cells with polyoma virus produced marked stimulation of both deoxyribonucleic acid (DNA) synthesis and ribonucleic acid (RNA) synthesis. ME cell cultures irradiated with ultraviolet for 30 sec at 60 μw/cm2 or treated with actinomycin D at 0.1 μg/ml for 6 hr prior to infection were incapable of synthesizing DNA or RNA, even after infection with polyoma virus. Irradiation of cells during infection produced cessation of synthesis of both RNA and DNA. Addition of actinomycin D during infection did not inhibit DNA synthesis but abolished RNA synthesis and reduced the yield of polyoma virus to 10% of that in untreated infected cultures. Both agents lost the ability to prevent replication of a full yield of polyoma virus when administered 30 hr after infection or later. The period after which neither agent inhibited polyoma replication corresponded with the period at which maximal RNA synthesis in untreated infected cultures had subsided. It can be concluded on the basis of the data presented that the functional integrity of the mouse embryo cell genome is required for the replication of polyoma virus, but not for EMC virus. Whereas the requirement for cellular DNA-dependent RNA synthesis for polyoma virus replication has been demonstrated, the exact nature of the host-cell function remains to be elucidated.  相似文献   

5.
Supercoiled DNA molecules purified from mouse cells infected with high-multiplicity-passaged polyoma virus has a broader size distribution and sediments more slowly than DNA derived from low-multiplicity-passaged virus. The shorter DNA molecules are predominately noninfectious. Virus populations containing distinct size classes of defective virus DNA were isolated by growing virus from single cells infected by a defective and nondefective helper virus (infectious center). This technique probably results in the cloning of defective virus particles. By applying the infectious center method to DNA from various fractions of sucrose gradients it has been possible to obtain shorter circular DNA molecules ranging in size from 50 to 95% of the unit-length polyoma DNA molecule. The shorter molecules in any one preparation are homogeneous in size. This class size is retained upon repeated passage of crude viral lysates at high multiplicity. Thus far, all the purified shorter DNA molecules tested appear to be noninfectious and largely resistant to cleavage by the R(1) restriction enzyme. Some of the purified defective molecules have been found to interfere with the production of infectious virus upon co-infection with unit-length infectious polyoma DNA.  相似文献   

6.
The interaction of polyoma virus with a continuous line of rat cells was studied. Infection of these cells with polyoma did not cause virus multiplication but induced transformation. Transformed cells did not produce infectious virus, but in all clones tested virus was rescuable upon fusion with permissive mouse cells. Transformed rat cells contained, in addition to integrated viral genomes, 20 to 50 copies of nonintegrated viral DNA equivalents per cell (average). "Free" viral DNA molecules were also found in cells transformed by the ts-a and ts-8 polyoma mutants and kept at 33 C. This was not due to a virus carrier state, since the number of nonintegrated viral DNA molecules was found to be unchanged when cells were grown in the presence of antipolyoma serum. Recloning of the transformed cell lines produced subclones, which also contained free viral DNA. Most of these molecules were supercoiled and were found in the muclei of the transformed cells. The nonintegrated viral DNA is infectious. Its specifici infectivity is, however, about 100-fold lower than that of polyoma DNA extracted from productively infected cells, suggesting that these molecules contain a large proportion of defectives.  相似文献   

7.
8.
5-Iododeoxyuridine (IUDR) inhibited production of infectious polyoma virus in mouse embryo cells and mouse kidney cells in culture. Deoxythymidine reversed its effect. IUDR did not inactivate infectivity of free virus particles. IUDR did not prevent adsorption and penetration of polyoma virus to cells. The events sensitive to IUDR treatment occurred at around 20 hours after infection. The cytopathic effects of polyoma virus, including emergence of DNA containing-inclusions in the nucleus, were observable in infected cells in which viral replication was completely arrested by IUDR. It was shown by fluorescent antibody technique in infected mouse embryo cells and by complement fixation test in infected mouse kidney cells that IUDR inhibited completely the synthesis of viral antigen. No virus-like particles were demonstrated in the IUDR-treated infected-mouse kidney cells by electron microscope examinations.  相似文献   

9.
F K Yoshimura  R A Weinberg 《Cell》1979,16(2):323-332
Both linear (form III) and closed circular (form I) viral DNAs obtained from mouse cells infected with Moloney murine leukemia virus were cleaved by Sal I, Sma I, Bam HI and Pst I restriction endonucleases. DNA fragments generated by these cleavages were ordered with respect to the 5' and 3' ends of the RNA genome by several techniques, including comparisons of the DNA fragments from cleavages of the linear and closed circular forms, double digestions using different combinations of enzymes and the use of an RNA probe specific for the 3' end. DNA from Hirt extractions of infected cells yielded a discrete species of linear viral DNA whose size was determined by agarose gel electrophoresis to be 5.7 x 10(6) daltons. In the course of characterizing the closed circular DNA, we observed two form I DNA molecules. The larger molecule was the same size as the linear DNA. The second molecule migrated faster on agarose gels and was the predominant species of the two closed circular DNAs. Using the restriction endonuclease maps which we derived, we demonstrate that this novel form I DNA is a smaller homogeneous species of viral DNA, missing about 600 nucleotides found in the linear and larger closed circular DNA molecules. We have localized the site of this missing DNA piece to be at either one or both ends of the linear viral DNA.  相似文献   

10.
A non-integrated form of Epstein-Barr virus DNA was purified from the Burkitt lymphoma-derived human lymphoid cell line Raji by CsCl density gradient centrifugation and neutral glycerol gradient centrifugation. This intracellular form of the virus DNA sediments at a rate typical of a covalently closed circular DNA molecule of the size of the virus genome in both neutral and alkaline solution. Treatment with low doses of X-rays leads to a discontinuous conversion of the molecules to a form with the sedimentation properties of open circular DNA (a circular duplex molecule containing one or more single-strand breaks). The direct observation of large circular DNA molecules by electron microscopy further confirms the covalently closed circular duplex structure of part of the intracellular viral DNA. Such circular molecules were not detected in corresponding DNA fractions from Epstein-Barr virus-negative human lymphoid cell lines. In ethidium bromide/CsCl density gradient centrifugation experiments, the purified non-integrated virus DNA behaves as twisted, covalently closed DNA circles with the same initial superhelix density as polyoma virus DNA. The latter additional purification technique permits the isolation of intracellular Epstein-Barr virus DNA in > 90% pure form from non-producer cells. The molecular weight of the circular virus DNA from Raji cells, determined by contour length measurements, is the same within experimental error as that of the linear DNA from virus particles.  相似文献   

11.
Upon microinjection into fertilized mouse eggs of circular molecules of plasmid pPyLT1 carrying the gene encoding the large T protein of polyoma virus within bacterial vector sequences, autonomous circular plasmids were stably maintained in low copy numbers in transgenic strains. These plasmids could be rescued in E. coli by transfection. Integrated forms could be detected neither in somatic tissues, nor in spermatozoa. Efficiency of paternal or maternal transmission was close to 100%. The plasmids had lost or had extensively rearranged the polyoma sequences. In addition, they had acquired defined segments of genomic mouse DNA, which might be responsible for correct segregation of daughter copies at both mitosis and meiosis (centromeric function).  相似文献   

12.
The relationship of the intracellular events leading to the production of polyoma pseudovirions in primary mouse embryo cells has been investigated. Replication of polyoma deoxyribonucleic acid (DNA) began 18 hr after infection. Assembly of viral capsid protein occurred 12 hr later. Intracellular fragments of host cell DNA, of the size found in pseudovirions, were first detected 36 hr after infection. The amount of intracellular 14S host DNA that was produced during infection was seven times greater than the amount of polyoma DNA synthesized. The relative pool sizes of polyoma DNA and 14S DNA at the time of virus assembly may dictate the amounts of polyoma virus and pseudovirus produced.  相似文献   

13.
J Piette  M H Kryszke    M Yaniv 《The EMBO journal》1985,4(10):2675-2685
Specific interactions between proteins from mouse 3T6 cells and the enhancer sequence of polyoma virus were detected using the method of band shifting on polyacrylamide gels. Proteins eluted from 3T6 nuclei using a buffer containing 0.55 M NaCl, formed a stable complex with the B enhancer of polyoma virus. At least two different factors are involved in this interaction. The contact sites which were mapped on the DNA sequence using DNase I footprinting correspond to a GC-rich palindrome surrounded by two sequences homologous respectively to the immunoglobulin and to the immunoglobulin and SV40 enhancers. Moreover Bal31 deletion analysis confirmed that similar sequences are required for the formation of the complex. In spite of a common function and partial sequence homology among some enhancers, neither the polyoma A enhancer, the mouse immunoglobulin heavy chain gene enhancer, nor the origin-promoter-enhancer region of SV40 efficiently competed with the polyoma B enhancer for the binding of these molecules.  相似文献   

14.
Two procedures are described for the fractionation of chromatin containing unsubstituted (LL) DNA and DNA unifilarly substituted with bromodeoxyuridine (HL). The two procedures rely upon the sensitivity of bromodeoxyuridine-containing DNA to UV light to induce either strand breakage or protein crosslinking. When a mixture of LL and HL chromatin is irradiated with UV light, the HL DNA fragments into molecules of smaller molecular weight than the LL DNA and crosslinks more chromosomal protein than the LL DNA. LL and HL chromatin can be fractionated on the basis of size by centrifuging through a neutral sucrose gradient. The HL DNA-protein adducts that are generated by the UV light have a unique buoyant density and may be isolated by isopycnic centrifugation in CS2SO4. The ability to fractionate LL and HL chromatin permits certain studies on the structure of replicating chromatin.  相似文献   

15.
16.
Cells of the 3T3 mouse line efficiently supported the multiplication of polyoma virus, and the infectious process was accompanied by a marked increase in thymidine kinase (TK) activity. Two lines of 5-bromodeoxyuridine-resistant 3T3 cells have been isolated. As expected, these cells incorporated practically no exogenous thymidine into their deoxyribonucleic acid (DNA) and contained negligible TK activity. Like the parental 3T3 cells, TK(-) lines were susceptible to productive infection by polyoma virus, but infection did not lead to an increase in TK activity. Since kinase activity did appear after infection with another virus (vaccinia) known to contain the gene(s) for that enzyme, it is concluded that TK is not one of the gene products of polyoma virus. As induction of cellular DNA synthesis by polyoma virus occurs normally when the TK(-) cells are infected in the stationary phase, TK cannot play a role in the determination of this phenomenon.  相似文献   

17.
The addition of phleomycin (25 mug) to primary mouse embryo cells infected with polyoma virus was found to cause 96% inhibition of the synthesis of infectious virus. When ribonucleic acid and protein synthesis was investigated in these cells by use of isotope incorporation, it was found that neither was inhibited drastically. Immunofluorescent staining studies with the use of antibody directed to the viral structural proteins showed that proteins were synthesized in the presence of the antibiotic. However, when deoxyribonucleic acid (DNA) synthesis was investigated, it was found that DNA synthesis in uninfected cells was completely inhibited within the initial 10 hr of phleomycin addition, whereas DNA synthesis in infected cells proceeded at a reduced rate. Selective DNA extraction (Hirt method) of phleomycin-treated infected cells demonstrated that synthesized viral DNA was salt-extractable, similar to that in infected control cells lacking phleomycin. This extracted DNA was further fractionated by ethidium bromide-cesium chloride density gradient equilibrium centrifugation. The phleomycin-treated preparations revealed twice as much component II (circular nicked and linear) as component I (supercoiled) DNA, whereas the DNA from normally infected control cells showed the reverse picture. It was also demonstrated that viral particles synthesized in the presence of phleomycin did not contain component I DNA. This packaged DNA was found to consist of fragments of both the host and viral types. Cells that were prelabeled with (3)H-thymidine and then treated with phleomycin demonstrated host DNA degradation. However, fragments formed from prelabeled host DNA were not encapsidated into viral particles.  相似文献   

18.
A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)).  相似文献   

19.
Fischer rat fibroblasts transformed by polyoma virus contain, in addition to viral sequences integrated into the host genome, nonintegrated viral DNA molecules, whose presence is under the control of the viral A gene. To understand the mechanism of production of the "free" viral DNA, we have characterized the DNA species produced by several rat lines transformed by wild-type virus or by ts-a polyoma virus and compared them with the integrated viral sequences. Every cell line tested yielded a characteristic number of discrete species of viral DNA. The presence of defectives was a very common occurrence, and these molecules generally carried deletions mapping in the viral "late" region. The production of multiple species of free viral DNA was not due to heterogeneity of the transformed rat cell population, and its pattern did not change upon fusion with permissive mouse cells. Analysis of the integrated viral DNA sequences in the same cell lines showed, in most cases, a full head-to-tail tandem arrangement of normal-size and defective molecules. The free DNA produced by these lines faithfully reflected the integrated species. This was true also in the case of a cell line which contained a viral insertion corresponding to approximately 1.3 polyoma genomes, with each of the repeated portions of the viral DNA molecule carrying a different-size deletion. These results support the hypothesis that the free DNA derives from the integrated form through a mechanism of homologous recombination leading to excision and limited replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号