首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Chalcone synthase is the key enzyme in biosynthesis of flavonoids, which play roles in pigmentation of flowers and protection against ultraviolet and pathogens. Inverse polymerase chain reaction (IPCR) is a method for the rapid in vitro amplification of DNA sequences that flank a region of known sequence. In this study, IPCR united with nested PCR was successfully applied in cloning full-length sequences of three Phalaenopsis chalcone synthase genes (phchs3, phchs4, and phchs5, respectively). Firstly, routine PCR with homologous primers were performed, and gene fragments of phchs3 (1 kb), phchs4 (1.2 kb), and phchs5 (800 bp) were obtained and then sequenced. Then, inverse PCR were carried out for cloning full-length sequence of each gene. Because products were not unique in single round inverse PCR, nested PCR were performed, and the specificity was much enhanced. At last, full-length sequences of 2,499 bp for phchs3, 2,502 bp for phchs4, and 1,855 bp for phchs5 were obtained. This study proved that IPCR could be more efficient if being united with nested PCR.  相似文献   

3.
We had been unsuccessful to amplify desired nucleotide sequences from various environmental DNA samples by using the inverse polymerase chain reaction (IPCR) technique, most probably because the copy numbers of target DNA sequences had been quite low. To enrich the target DNA sequences prior to IPCR, a rolling-circle amplification was used with a site-specific primer containing locked nucleic acids (LNAs). This pre-amplified IPCR (PAI-PCR) method increased the sensitivity of PCR almost 10 000 times compared with the standard IPCR in model experiments using Escherichia coli . We then applied the PAI-PCR method to isolate glycosyl hydrolase genes from DNAs extracted from vermiform appendixes of horses and termite guts. The flanking sequences of the target genes were amplified and cloned successfully using PAI-PCR, whereas standard IPCR resulted in no amplification.  相似文献   

4.
利用反向PCR方法扩增细菌热激蛋白HSP60基因   总被引:4,自引:0,他引:4  
利用PCR简并引物扩增出HSP6 0基因中一段约 6 0 0bp的核心片段 ,将该核心片段标记为探针 ,与基因组DNA进行Southern杂交 ,选择出适宜的限制性内切酶 ,以便消化基因组DNA得到大小合适的、含有HSP6 0基因的酶切片段。将酶切片段自身环化后作为模板进行反向PCR ,引物的延伸方向自核心片段出发延环化分子向未知序列区进行 ,可扩增出核心区上下游的序列。应用该方法 ,扩增并测定了寓齿双歧杆菌 (Bifidobacteriumdenticolens)DSM1 0 1 0 5 T、奇异双歧杆菌 (Bifidobacteriuminopinatum)DSM1 0 1 0 7T 和阴道加德纳氏菌 (Gard nerellavaginalis)ATCC1 40 1 8T 的HSP6 0全基因序列及青春双歧杆菌 (Bifidobacteriumadolescentis)JCM1 2 75 T98%以上的HSP6 0全基因序列。结果表明 ,反向PCR方法可有效的扩增细菌HSP6 0基因  相似文献   

5.
6.
One of the major challenges of performing the IPCR has been to establish a robust, sensitive, and specific method which is easily adapted and highly standardized for routine use in a clinical laboratory. Presently, the performance of IPCR typically involves elaborate and multiple, time-consuming steps prone to high variation in reagents and technical application. Further advances in the technology and instrumentation used for the signal detection of IPCR has resulted in the development of real-time IPCR (rt-IPCR). Rt-IPCR is still relatively undeveloped in comparison to the use of both real-time PCR and IPCR as evidenced by the low number (eight citations) of publications in the scientific literature. However, increased use of rt-IPCR has shown that the method displays improved statistical validation of accuracy over IPCR. Inter-assay error is typically 5-10% vs 15-20% for IPCR. The primary advantage of using rt-IPCR in place of IPCR is the immediate interpretation of positive data (quantification of proteins) as the PCR reaction proceeds. This aspect is key to real-time diagnosis and has great importance for specific emergency situations (i.e., biological and environmental contaminations of toxins in biothreat situations), as well as cases where specific tumor/viral antigens and pathologic proteins may be present in body tissues in extremely low concentrations and rapid, early diagnosis is important for immediate palliative treatment. This review summarizes all of the experimental data published to date utilizing the rt-IPCR method for various analytes (vascular endothelial growth factor, mumps Ag, rViscumin, various IgG, gliadin, HIV-1 p24 Ag, Rotavirus VP6, pathologic and recombinant prion, and prostate specific Ag) and describes the molecular scaffold formats, solid formats, instrument detection systems, and probes/primers or fluorescent dyes used in these assays. With further standardization and validation, rt-IPCR has the potential to become the most analytically sensitive method available for the detection of proteins.  相似文献   

7.
勒氏笛鲷微卫星位点的筛选及特征分析   总被引:8,自引:1,他引:7  
郭昱嵩  王中铎  刘楚吾  刘筠 《遗传》2007,29(3):355-359
采用PCR法快速筛选勒氏笛鲷(Lutjanus russelli)基因组文库, 以获得(CA)n微卫星位点。勒氏笛鲷基因组DNA经限制性内切酶HaeⅢ+ DraⅠ双酶切后, 连接T-载体克隆, 构建基因组文库。以通用引物M13+/-与重复序列引物(CA)15对基因组文库进行筛选, 二次筛选后得到121个可能含有微卫星位点的阳性克隆。进行序列测定, 共获得53个CA(n≥7)重复序列, 重复次数主要分布于7~15(80.77%)。在所得微卫星序列中, 重复单元除CA外, 还观察到单碱基、三碱基、四碱基、五碱基重复单元。根据侧翼序列设计48对引物, 通过优化PCR反应条件, 可获得清晰可重复的目的条带。研究旨在为勒氏笛鲷遗传多样性研究及遗传图谱的构建等奠定基础, 为勒氏笛鲷资源的合理开发利用提供参考。  相似文献   

8.
9.
Immuno-PCR (IPCR) has been studied to increase the detection sensitivity of current enzyme-linked immuno-sorbent assays (ELISA) as a novel approach for the early detection of Rotavirus infection, a major source for serious diarrhoea for susceptible risk groups. IPCR utilizes specific antibody-DNA conjugates with subsequent amplification of the marker-DNA. An antibody-DNA conjugate specific for Rotavirus antigen VP6 was synthesized and used in combination with a commercially available Rotavirus-ELISA kit. IPCR was carried out using reagents and protocols of the standardized Imperacer system. Real-time PCR monitoring of the marker-DNA amplification was compared to endpoint quantification of amplified haptene-labeled PCR products, using a microtiterplate-based PCR-ELISA. In spiked calibration samples, as few as 100 virus particles/ml could be clearly detected using the IPCR method and either real-time or end-point quantification compared to about 100,000 virus particles/ml in ELISA. Rotavirus positive and negative stool samples were correctly identified by IPCR with a clear separation even of a 10,000-fold dilution of the positive stool samples from the negative control.  相似文献   

10.
Transgenes can affect transgenic mice via transgene expression or via the so-called positional effect. DNA sequences can be localized in chromosomes using recently established mouse genomic databases. In this study, we describe a chromosomal mapping method that uses the genomic walking technique to analyze genomic sequences that flank transgenes, in combination with mouse genome database searches. Genomic DNA was collected from two transgenic mouse lines harboring pCAGGS-based transgenes, and adaptor-ligated, enzyme restricted genomic libraries for each mouse line were constructed. Flanking sequences were determined by sequencing amplicons obtained by PCR amplification of genomic libraries with transgene-specific and adaptor primers. The insertion positions of the transgenes were located by BLAST searches of the Ensembl genome database using the flanking sequences of the transgenes, and the transgenes of the two transgenic mouse lines were mapped onto chromosomes 11 and 3. In addition, flanking sequence information was used to construct flanking primers for a zygosity check. The zygosity (homozygous transgenic, hemizygous transgenic and non-transgenic) of animals could be identified by differential band formation in PCR analyses with the flanking primers. These methods should prove useful for genetic quality control of transgenic animals, even though the mode of transgene integration and the specificity of flanking sequences needs to be taken into account.  相似文献   

11.
TRAP及SSCP检测草鱼微卫星序列多态性   总被引:5,自引:0,他引:5  
目的:在草鱼不同种群遗传结构比较中,应用一些来自鲤鱼的微卫星引物扩增草鱼的相关序列缺少多态性,该研究通过应用几种方法提高这些序列在遗传学研究中的价值。方法:运用TRAP随机引物与鲤鱼的微卫星引物组合,扩增出多态性好、重复性强的产物;同时采用SSCP技术对那些没有长度多态的微卫星序列进一步分析,寻找这些序列存在一些核苷酸位点的多态性。结果:TRAP可以检查到多态性好、重复性强的产物;SSCP发现一部分没有长度多态性的微卫星序列存在核苷酸位点多态性并且可以清楚分辨不同的基因型。结论:结果表明TRAP及SSCP在种群遗传学研究有良好的应用前景。  相似文献   

12.
Shiga toxin-producing Escherichia coli (STEC) in the environment has been reported frequently. However, robust detection of STEC in environmental samples remains difficult because the numbers of bacteria in samples are often below the detection threshold of the method. We developed a novel and sensitive immuno-PCR (IPCR) assay for the detection of Shiga toxin 2 (Stx2) and Stx2 variants. The assay involves immunocapture of Stx2 at the B subunit and real-time PCR amplification of a DNA marker linked to a detection antibody recognizing the Stx2 A subunit. The qualitative detection limit of the assay is 0.1 pg/ml in phosphate-buffered saline (PBS), with a quantification range of 10 to 100,000 pg/ml. The IPCR method was 10,000-fold more sensitive than an analogue conventional enzyme-linked immunosorbent assay (ELISA) in PBS. Although the sensitivity of the IPCR for detection of Stx2 was affected by environmental sample matrices of feces, feral swine colons, soil, and water from watersheds, application of the IPCR assay to 23 enriched cultures of fecal, feral swine colon, soil, and watershed samples collected from the environment revealed that the IPCR detected Stx2 in all 15 samples that were shown to be STEC positive by real-time PCR and culture methods, demonstrating a 100% sensitivity and specificity. The modification of the sandwich IPCR we have described in this study will be a sensitive and specific screening method for evaluating the occurrence of STEC in the environment.  相似文献   

13.
We developed a novel method for synthesizing marker-disrupted alleles of yeast genes. The first step is PCR amplification of two sequences located upstream and downstream of the reading frame to be disrupted. Due to the addition of non-specific single A overhangs by Taq DNA polymerase, each PCR product can be ligated with a marker DNA which has T residues at its 3' ends. After amplification of individual ligation products through the second PCR, both products are mixed and annealed, and the single strand is converted to a double strand by an extension reaction. The final step is PCR amplification of the fragment composed of a selectable marker and two flanking sequences with the outermost primers. This method is rapid and needs only short oligonucleotides as primers.  相似文献   

14.
15.
16.
AIMS: To develop a specific method for distinguishing and detecting Pythium species. METHODS AND RESULTS: Twenty PCR primers were designed from the sequences of the rDNA internal transcribed spacer 1 (ITS1) region from 34 Pythium species. The specificity of these forward primers paired with ITS2 or ITS4 and reverse universal primers was tested. Five species-specific primers were obtained, other primers showed different specificity to Pythium species. The specific amplifications enabled nine Pythium species to be differentiated. Specific detection of Pythium aphanidermatum from infested plants and P. dimorphum from soil was demonstrated. CONCLUSIONS: A method for identifying nine Pythium species using specific PCR amplification was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its rapidness and ease, the results of PCR amplified with different primers can be a powerful method for identifying Pythium species and detecting or monitoring the target fungus directly from plant material, soil and water samples.  相似文献   

17.
Nucleic acid amplification techniques are used for signal generation in antibody-based immunoassays, thereby dramatically enhancing the sensitivity of conventional immunoassays. Methodological aspects, as well as applications of this novel approach, are summarized in this review, with an emphasis on immuno-polymerase chain reaction (IPCR). IPCR is based on chimeric conjugates of specific antibodies and nucleic acid molecules, the latter of which are used as markers to be amplified by PCR for signal generation. The enormous efficiency of nucleic acid amplification typically leads to a 100-10,000-fold increase in sensitivity, as compared with the analogous enzyme-amplified immunoassay. The evolution of IPCR included the development of efficient reagents, the design of assay formats and the maintenance of functionality, even within complex biological matrices. Eventually, IPCR crossed the border from being a research method to a routine laboratory technique, enabling a broad range of applications in immunological research and clinical diagnostics.  相似文献   

18.
DNA analysis with multiplex microarray-enhanced PCR   总被引:3,自引:2,他引:1       下载免费PDF全文
We have developed a highly sensitive method for DNA analysis on 3D gel element microarrays, a technique we call multiplex microarray-enhanced PCR (MME-PCR). Two amplification strategies are carried out simultaneously in the reaction chamber: on or within gel elements, and in bulk solution over the gel element array. MME-PCR is initiated by multiple complex primers containing gene-specific, forward and reverse, sequences appended to the 3′ end of a universal amplification primer. The complex primer pair is covalently tethered through its 5′ end to the polyacryl- amide backbone. In the bulk solution above the gel element array, a single pair of unattached universal primers simultaneously directs pseudo-monoplex PCR of all targets according to normal solution-phase PCR. The presence of a single universal PCR primer pair in solution accelerates amplification within gel elements and eliminates the problem of primer interference that is common to conventional multiplex PCR. We show 106-fold amplification of targeted DNA after 50 cycles with average amplification efficiency 1.34 per cycle, and demonstrate specific on-chip amplification of six genes in Bacillus subtilis. All six genes were detected at 4.5 pg of bacterial genomic DNA (equivalent to 103 genomes) in 60 independent amplification reactions performed simultaneously in single reaction chamber.  相似文献   

19.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

20.
PCR has been extensively used for amplification of DNA sequences. We conducted a study to obtain the best amplification conditions for cytochrome b (Cyt b), cytochrome c oxidase I (COI) and 12S rRNA (12S) gene fragments of Malayan gaur mtDNA. DNA from seven Malayan gaur samples were extracted for PCR amplification. Various trials and combinations were tested to determine the best conditions of PCR mixture and profile to obtain the best PCR products for sequencing purposes. Four selected target factors for enhancing PCR, annealing temperature, concentration of primer pairs, amount of Taq polymerase, and PCR cycle duration, were optimized by keeping the amount of DNA template (50 ng/μL) and concentration of PCR buffer (1X), MgCl(2) (2.5 mM) and dNTP mixture (200 μM each) constant. All genes were successfully amplified, giving the correct fragment lengths, as assigned for both forward and reverse primers. The optimal conditions were determined to be: 0.1 μM primers for Cyt b and COI, 0.3 μM primers for 12S, 1 U Taq polymerase for all genes, 30 s of both denaturation and annealing cycles for Cyt b, 1 min of both stages for 12S and COI and annealing temperature of 58.4 ° C for Cyt b, 56.1 ° C for 12S and 51.3 ° C for COI. PCR products obtained under these conditions produced excellent DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号