首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the response properties of sensory neurons in the thalamus and cerebral cortex have been studied for decades, relatively few studies have examined how sensory information is processed at thalamocortical synapses. Recent studies now show that the strength of thalamocortical connections is very dynamic and spike timing plays an important role in determining whether action potentials will be transferred from thalamus to cortex.  相似文献   

2.
Vilis O. Nams 《Ecology letters》2014,17(10):1228-1237
Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments.  相似文献   

3.
《Neuron》2022,110(24):4176-4193.e10
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

4.
Journal of Computational Neuroscience - Transcranial magnetic stimulation (TMS) is an effective method to treat neurophysiological disorders by modulating the electrical activities of neurons....  相似文献   

5.
Castro-Alamancos MA 《Neuron》2004,41(3):455-464
One prominent feature of sensory responses in neocortex is that they rapidly adapt to increases in frequency, a process called "sensory adaptation." Here we show that sensory adaptation mainly occurs during quiescent states such as anesthesia, slow-wave sleep, and awake immobility. In contrast, during behavior-ally activated states, sensory responses are already adapted. For instance, during learning of a behavioral task, when an animal is very alert and expectant, sensory adaptation is mostly absent. After learning occurs, and the task becomes routine, the level of alertness lessens and sensory adaptation becomes robust. The primary sensory thalamocortical pathway of alert and expectant animals is in the adapted state, which may be required for adequate sensory information processing.  相似文献   

6.
Luo F  Wang JY 《生理学报》2008,60(5):669-676
Acute pain is a warning protective sensation for any impending harm. However, chronic pain syndromes are often resistant diseases that may consume large amount of health care costs. It has been suggested by recent studies that pain perception may be formed in central neural networks via large-scale coding processes, which involves sensory, affective, and cognitive dimensions. Many central areas are involved in these processes, including structures from the spinal cord, the brain stem, the limbic system, to the cortices. Thus, chronic painful diseases may be the result of some abnormal coding within this network. A thorough investigation of coding mechanism of pain within the central neuromatrix will bring us great insight into the mechanisms responsible for the development of chronic pain, hence leading to novel therapeutic interventions for pain management.  相似文献   

7.
Electron microscopy and image processing are powerful tools for investigating different conformational states of enzymes. It is not always possible to isolate these often unstable intermediates as single species. As a result electron micrographs show a snapshot of enzymes in various conformational states. We describe here how to recognize that the imaged particles have different conformations and how to obtain for each species a three-dimensional model using single-particle image processing. We investigated the ATP synthase from chloroplasts, which has a molecular mass of about 550 kDa. It is a membrane-bound enzyme and consists of two segments, a membrane-embedded hydrophobic F(0) part and a hydrophilic F(1) part. Analysis of the particle images indicated that the molecules were in two different conformations. For both conformations three-dimensional models were calculated, which showed that the structures differed mainly in the tilt of the F(0) part with respect to the F(1) part.  相似文献   

8.
It was found that the nuclei of well-fed amoebae accumulate colloidal gold from the cytoplasm at a significantly greater rate than the nuclei of cells starved for five or nine days. The results are most likely due to a decrease in the permeability of the nuclear envelope during starvation. Evidence was obtained indicating that the permeability decrease is caused by a change in the functional properties of the pores, rather than a change in either pore size or number. These findings are consistent with the view that the nuclear pores are involved in regulating cellular activity.  相似文献   

9.
Oberlaender M  Ramirez A  Bruno RM 《Neuron》2012,74(4):648-655
The brain's capacity to rewire is thought to diminish with age. It is widely believed that development stabilizes the synapses from thalamus to cortex and that adult experience alters only synaptic connections between cortical neurons. Here we show that thalamocortical (TC) inputs themselves undergo massive plasticity in adults. We combined whole-cell recording from individual thalamocortical neurons in adult rats with a recently developed automatic tracing technique to reconstruct individual axonal trees. Whisker trimming substantially reduced thalamocortical axon length in barrel cortex but not the density of TC synapses along a fiber. Thus, sensory experience alters the total number of TC synapses. After trimming, sensory stimulation evoked more tightly time-locked responses among thalamorecipient layer 4 cortical neurons. These findings indicate that thalamocortical input itself remains plastic in adulthood, raising the possibility that the axons of other subcortical structures might also remain in flux throughout life.  相似文献   

10.
There is growing evidence in favor of the temporal-coding hypothesis that temporal correlation of neuronal discharges may serve to bind distributed neuronal activity into unique representations and, in particular, that θ (3.5-7.5 Hz) and δ (0.5 < 3.5 Hz) oscillations facilitate information coding. The θ- and δ-rhythms are shown to be involved in various sleep stages, and during anesthesia, they undergo changes with the depth of anesthesia. We introduce a thalamocortical model of interacting neuronal ensembles to describe phase relationships between θ- and δ-oscillations, especially during deep and light anesthesia. Asymmetric and long-range interactions among the thalamocortical neuronal oscillators are taken into account. The model results are compared with experimental observations. The δ- and θ-activities are found to be separately generated and are governed by the thalamus and cortex, respectively. Changes in the degree of intraensemble and interensemble synchrony imply that the neuronal ensembles inhibit information coding during deep anesthesia and facilitate it during light anesthesia.  相似文献   

11.
Steriade M  Timofeev I 《Neuron》2003,37(4):563-576
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that, during natural slow-wave sleep oscillations or their experimental models, both thalamic and cortical neurons progressively enhance their responsiveness. This potentiation lasts for several minutes after the end of oscillatory periods. Cortical neurons display self-sustained activity, similar to responses evoked during previous epochs of stimulation, despite the fact that thalamic neurons remain under a powerful hyperpolarizing pressure. These data suggest that, far from being a quiescent state during which the cortex and subcortical structures are globally inhibited, slow-wave sleep may consolidate memory traces acquired during wakefulness in corticothalamic networks. Similar phenomena occur as a consequence of fast oscillations during brain-activated states.  相似文献   

12.
13.
14.
Atomic models of the myosin motor domain with different bound nucleotides have revealed the open and closed conformations of the switch 2 element [Geeves, M.A. & Holmes, K.C. (1999) Annu. Rev. Biochem.68, 687-728]. The two conformations are in dynamic equilibrium, which is controlled by the bound nucleotide. In the present work we attempted to characterize the flexibility of the motor domain in the open and closed conformations in rabbit skeletal myosin subfragment 1. Three residues (Ser181, Lys553 and Cys707) were labelled with fluorophores and the probes identified three fluorescence resonance energy transfer pairs. The effect of ADP, ADP.BeFx, ADP.AlF4- and ADP.Vi on the conformation of the motor domain was shown by applying temperature-dependent fluorescence resonance energy transfer methods. The 50 kDa lower domain was found to maintain substantial rigidity in both the open and closed conformations to provide the structural basis of the interaction of myosin with actin. The flexibility of the 50 kDa upper domain was high in the open conformation and further increased in the closed conformation. The converter region of subfragment 1 became more rigid during the open-to-closed transition, the conformational change of which can provide the mechanical basis of the energy transduction from the nucleotide-binding pocket to the light-chain-binding domain.  相似文献   

15.
16.
The adaptive feeding of nutrients especially of carbon and energy sources according to the demand of cells in different cell states during continuous or semicontinuous cultivation is called dynamic processing. The deduction of dynamic process control concepts is aimed at improving the efficiency of biological substrate conversions into cell mass and other reaction products. A growing number of results allows us to postulate that the principle of dynamic processing should be generally applied in biotechnical processes independent of the type of cells and substrates as well as the nature of products. The basis of the deduction of dynamic process control concepts is the exact knowledge of the dependences of efficiency and rate of product synthesis on cell states during the development of cell populations.  相似文献   

17.
Brain states: top-down influences in sensory processing   总被引:8,自引:0,他引:8  
Gilbert CD  Sigman M 《Neuron》2007,54(5):677-696
All cortical and thalamic levels of sensory processing are subject to powerful top-down influences, the shaping of lower-level processes by more complex information. New findings on the diversity of top-down interactions show that cortical areas function as adaptive processors, being subject to attention, expectation, and perceptual task. Brain states are determined by the interactions between multiple cortical areas and the modulation of intrinsic circuits by feedback connections. In perceptual learning, both the encoding and recall of learned information involves a selection of the appropriate inputs that convey information about the stimulus being discriminated. Disruption of this interaction may lead to behavioral disorders, including schizophrenia.  相似文献   

18.
19.
20.
Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been reported in the literature. Furthermore, several expressions have been proposed to model the influence of temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a constant temperature within the temperature range of microbial growth, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical model--a first-order differential equation--has been derived, describing the bacterial population as a function of both time and temperature. Furthermore, the inactivation of the population at temperatures above the maximum temperature for growth has been incorporated. In the special case of a constant temperature, the solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent reports. However, the main advantage of this dynamic model is its ability to deal with time-varying temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to microbial safety of a production and distribution chain of chilled foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号