首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriochlorophyll(Bchl)-protein complexes were isolated from obligate aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. The apparent molecular weights, absorption spectra and polypeptide compositions of the light-harvesting complexes were, in general, similar to those of the light-harvesting Bchl-protein complexes of purple photosynthetic bacteria. The reaction center complexes of these bacteria also showed similar properties to those of the purple bacteria except for slightly altered polypeptides. However, the following characteristic features of the light-harvesting systems were found in these aerobic bacteria. Major carotenoids were not bound to the Bchl-protein complex in E. longus. In Erythrobacter sp. OCh 114, a new type of Bchl-protein complex which showed a single absorption band in the near infrared region at 806 nm was obtained. The reaction center of strain OCh 114 was associated with a c-type cytochrome.Abbreviations Bchl bacteriochlorophyll a - RC reaction center - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

2.
The photosynthetic membrane in purple bacteria contains several pigment–protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1–RC (light-harvesting complex 1 – reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1–RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC–LH1–PufX cores, as it has been proposed in Rb. sphaeroides.  相似文献   

3.
Summary The photosynthetic pigments of chloroplast thylakoid membranes are complexed with specific intrinsic polypeptides which are included in three supramolecular complexes, photosystem I complex, photosystem II complex and the light-harvesting complex. There is a marked lateral heterogeneity in the distribution of these complexes along the membrane with photosystem II complex and its associated light-harvesting complex being located mainly in the stacked membranes of the grana partitions, while photosystem I complex is found mainly in unstacked thylakoids together with ATP synthetase. In contrast, the intermediate electron transport complex, the cylochrome b-f complex, is rather uniformly distributed in these two membrane regions. The consequences of this lateral heterogeneity in the location of the thylakoid complexes are considered in relation to the function and structure of chloroplasts of higher plants.  相似文献   

4.
The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.  相似文献   

5.
Rhodopseudomonas sp. Rits is a recently isolated new species of photosynthetic bacteria and found to accumulate a significantly high amount of bacteriochlorophyll (BChl) a intermediates possessing non-, di- and tetra-hydrogenated geranylgeranyl groups at the 17-propionate as well as normal phytylated BChl a (Mizoguchi T et al. (2006) FEBS Lett 580:137-143). A phylogenetic analysis showed that this bacterium was closely related to Rhodopseudomonas palustris. The strain Rits synthesizes light-harvesting complexes 2 and 4 (LH2/4), as peripheral antennas, as well as the reaction center and light-harvesting 1 core complex (RC-LH1 core). The amounts of these complexes were dependent upon the incident light intensities, which was also a typical behavior of Rhodopseudomonas palustris. HPLC analyses of extracted pigments indicated that all four BChls a were associated with the purified photosynthetic pigment-protein, as complexes described above. The results suggested that this bacterium could use these pigments as functional molecules within the LH2/4 and RC-LH1 core. Pigment compositional analyses in several purple photosynthetic bacteria showed that such BChl a intermediates were always detected and were more widely distributed than expected. Long chains in the propionate moiety of BChl a would be one of the important factors for assembly of LH systems in purple photosynthetic bacteria.  相似文献   

6.
7.
Surface electric properties of thylakoid membranes from wild type and two mutant forms, Coeruleovireus 2/16 and Costata 2/133, of pea are investigated by electric light scattering and microelectrophoretic measurements. Characterization of the chlorophyll–protein complexes in thylakoid membranes reveals that the relative ratio of oligomeric (LHC II1) to monomeric (LHC II3) forms of the light-harvesting Chl a/b complex of Photosystem II is lower (3.34) in 2/133 mutant and higher (6.62) in 2/16 mutant than in wild type (4.57). This is accompanied by elevated amounts and a considerable reduction of all carotenoids in 2/16 and 2/133 mutant, respectively, as compared to the wild type. The concomitant variations of the permanent dipole moment (transversal charge asymmetry), electric polarizability and electrokinetic charge of the thylakoid membranes from both the mutants are discussed in terms of the differences in the supramolecular (oligomeric) organization of the light-harvesting complexes II within the photosynthetic apparatus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Spectroscopy of individual light-harvesting 2 complexes from purple photosynthetic bacteria revealed a deformation of the circular complex into C(2) symmetry. The present work relates the geometry of the deformed aggregate to its spectroscopic properties. Different models of elliptical deformation are discussed and compared with the experimental findings. It is shown that the model with smaller interpigment distances, where the curvature of the ellipse is small, provides the best agreement with fluorescence excitation spectra of individual complexes.  相似文献   

9.
《BBA》2023,1864(4):149001
Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions.  相似文献   

10.
Photosynthetic core complexes of anoxygenic bacteria consist of reaction centres (RCs) surrounded by light-harvesting complexes (LHC). The structural proteins of the RC-LHC1 complex are encoded by the puf-operon. We find diverse operon organizations of puf-operons that reflect structural differences of the core complex in marine aerobic anoxygenic photosynthetic bacteria (AAnP). By analysis of environmental DNA records coming from AAnP bacteria we find several unknown proteins downstream to the pufM, which were assigned as novel PufX proteins. As all known pufX genes belong to Rhodobacter strains which carry out anaerobic photosynthesis, this may be the first observation of a PufX-containing RCs in aerobic anoxygenic photosynthetic bacteria. Phylogenetic analyses of PufM proteins from cultured as well as from uncultured bacteria show that PufM from operons containing putative novel pufX genes are grouped with Rhodobacter and not with Roseobacter strains.  相似文献   

11.
Photosynthetic organisms drive their metabolism by converting light energy into an electrochemical gradient with high efficiency. This conversion depends on the diffusion of quinones within the membrane. In purple photosynthetic bacteria, quinones reduced by the reaction center (RC) diffuse to the cytochrome bc(1) complex and then return once reoxidized to the RC. In Rhodospirillum photometricum the RC-containing core complexes are found in a disordered molecular environment, with fixed light-harvesting complex/core complex ratio but without a fixed architecture, whereas additional light-harvesting complexes synthesized under low-light conditions pack into large paracrystalline antenna domains. Here, we have analyzed, using time-lapse atomic force microscopy, the dynamics of the protein complexes in the different membrane domains and find that the disordered regions are dynamic whereas ordered antennae domains are static. Based on our observations we propose, and analyze using Monte Carlo simulations, a model for quinone diffusion in photosynthetic membranes. We show that the formation of large static antennae domains may represent a strategy for increasing electron transfer rates between distant complexes within the membrane and thus be important for photosynthetic efficiency.  相似文献   

12.
Biochemistry (Moscow) - The mechanism of bacteriochlorophyll photooxidation in light-harvesting complexes of a number of purple photosynthetic bacteria when the complexes are excited into the...  相似文献   

13.
Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.  相似文献   

14.
《BBA》1985,810(2):269-273
Comparison of the resonance Raman spectra of carotenoids in vivo and in vitro has revealed that in some species of photosynthetic bacteria the major fraction of carotenoids associated with the light-harvesting systems has forms distorted (twisted) from the planar all-trans conformation. These distorted forms are kept in isolated and purified light-harvesting bacteriochlorophyll-protein complexes.  相似文献   

15.
Chlorosome antenna complexes from green photosynthetic bacteria   总被引:1,自引:0,他引:1  
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment–pigment interactions as opposed to protein–pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.  相似文献   

16.
《BBA》2023,1864(2):148946
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αβ-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.  相似文献   

17.
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.  相似文献   

18.
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.  相似文献   

19.
Self-aggregates of a synthetic zinc porphyrin worked as a light absorber and photoexcited energy donor, transferred the collected energy to a small amount of 3-acetyl-(bacterio)chlorin monomer, and induced near-infrared fluorescence from the acceptors in aqueous micellar solution. These artificial supramolecular systems are novel models of the main light-harvesting antennas of green photosynthetic bacteria, chlorosomes.  相似文献   

20.
Energy-transducing membranes of the nonsulfur purple photosynthetic bacteria are known to contain several species of bacteriochlorophyll (BChl) complexes. The reaction-centre complex (rc-BChl) is the locus of the charge separation that provides the poles of the photochemical electron transport system, whereas the other complexes serve lightharvesting functions. This report summarizes an investigation of the general features of the control mechanisms governing synthesis of the several chlorophyll complexes inRhodopseudomonas capsulata. The results obtained indicate a close biosynthetic association between rc-BChl and one of the light-harvesting chlorophylls (complex I). Regulation of synthesis of light-harvesting complex II (during anaerobic photosynthetic growth) appears to be relatively independent, and intimately related to the energy state of the cell. Chlorophyll synthesis inR. capsulata cells growing aerobically in darkness was also studied. The presence of functional photosynthetic units in dark-grown cells, of very low BChl content, was clearly evidenced by demonstration of: the potentiality for resumption of anaerobic photosynthetic growth, light-induced oxidation of cytochrome552 in vivo, and high photophosphorylation capacity (relative to BChl) of membrane fragments from such cells. Synthesis of light-harvesting BChl complex II is particularly inhibited in cells growing in darkness with respiratory phosphorylation as the source of energy, and it is suggested that this complex is a primary target of the biosynthetic control devices activated by change of light intensity or presence of molecular oxygen during growth of nonsulfur purple bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号