首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the influence of modifications of uridine 5'-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5'-methylenephosphonates were the reaction of a suitably protected uridine 5'-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki-Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor.  相似文献   

2.
Human UMP-CMP kinase is involved in the phosphorylation of nucleic acid precursors and also in the activation of antiviral analogues including cidofovir, an acyclic phosphonate compound that mimicks dCMP and shows a broad antiviral spectrum. The binding of ligands to the enzyme was here investigated using a fluorescent probe and a competitive titration assay. At the acceptor site, the enzyme was found to accommodate any base, purine and pyrimidine, including thymidine. A method for screening analogues based on their affinity for the UMP binding site was developed. The affinities of uracil vinylphosphonate derivatives modified in the 5 position were found similar to (d)UMP and (d)CMP and improved when compared to cidofovir.  相似文献   

3.
Human UMP-CMP kinase is involved in the phosphorylation of nucleic acid precursors and also in the activation of antiviral analogues including cidofovir, an acyclic phosphonate compound that mimicks dCMP and shows a broad antiviral spectrum. The binding of ligands to the enzyme was here investigated using a fluorescent probe and a competitive titration assay. At the acceptor site, the enzyme was found to accommodate any base, purine and pyrimidine, including thymidine. A method for screening analogues based on their affinity for the UMP binding site was developed. The affinities of uracil vinylphosphonate derivatives modified in the 5 position were found similar to (d)UMP and (d)CMP and improved when compared to cidofovir.  相似文献   

4.
Cytosolic 5'-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5'-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues.  相似文献   

5.
As antiviral nucleosides containing a fluorine atom at 2′-position are endowed with increased stabilization of glycosyl bond, it was of interest to investigate the influence of three fluorine atoms at 2′- and 5′-positions of apiosyl nucleoside phosphonate analogues. Various pyrimidine and purine 2′,5′,5′-trifluoro-3′-hydroxy-apiose nucleoside phosphonic acid analogues were synthesized from 1,3-dihydroxyacetone. Electrophilic fluorination of lactone was performed using N-fluorodibenzenesulfonimide. Difluorophosphonation was performed by direct displacement of triflate intermediate with diethyl(lithiodifluoromethyl) phosphonate to give the corresponding (α,α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield nucleoside phosphonate analogues. Deprotection of diethyl phosphonates provided the final phosphonic acid sodium salts. The synthesized nucleoside analogues were subjected to antiviral screening against various viruses.  相似文献   

6.
Lipophilic protecting groups mTrNH(CH2)n X (mTr:monomethoxytrityl, X = NH,O,S, n = 2,3,4,6) were attached to the 5'-phosphoryl group of 3'-O-protected thymidine. When the diamine derivatives (X = NH2) were used, the time course of the stability of mTr groups on the amino group and the phosphoramidate linkage with 80% aq. AcOH was measured. It was found that the mTr group was removed from the amino group rapidly and that the phosphoramidate linkage was more stable. It's stability depended upon the length of the CH2 linker. Oligonucleotides with an aliphatic amino group at their 5'-ends were synthesized by the phosphotriester method on a polystyrene support using protected nucleotides with P-O or P-S linkages. In the case of product with a P-S linkage, 5'-O-phosphorylated nonadecanucleotide was also prepared by I2-H2O treatment.  相似文献   

7.
The thymidine base analogues 5-chlorodeoxyuridine, 5-bromodeoxyuridine, and 5-iododeoxyuridine were found to be mutagenic in diploid human lymphoblasts. Mutation was measured as the loss of hypoxanthine-guanine phosphoribosyl transferase activity, which is expressed phenotypically as resistance to 6-thioguanine. Concentration dependence of induced mutant fraction exhibited a maximum for all three compounds. It is postulated that at higher concentrations these thymidine analogues inhibit cytidine diphosphate reductase. Slowed DNA synthesis would result in lower analogue incorporation and thus a lower mutant fraction.  相似文献   

8.
Synthesis of new sildenafil analogues containing a phosphonate group in the 5(')-sulfonamide moiety of the phenyl ring, 12a-e, 13a-d, and 14a-d, and evaluation of their in vitro PDE5 inhibitory activity are disclosed. Enzyme assays revealed that maximum 10-fold increase in PDE5 inhibitory activity, compared with sildenafil, was achieved by introducing a phosphonate group in the 5(')-sulfonamide moiety. Docking model of (PDE5: 12d) complex shows that the PDE5-bound conformation of 12d matches completely with that of sildenafil, while 12d is partially overlapped with cGMP with ethyl phosphonate group of 12d superimposed onto the cyclic phosphate group of cGMP.  相似文献   

9.
Various methods of synthesis of metabolically stable phosphonate analogues of bisnucleoside oligophosphates containing two residues of methylenediphosphonic acid in the oligophosphate chain are studied. Phosphonate analogues of Ip4I and Ip5I are prepared.  相似文献   

10.
We tested various thymidine analogues for induction of a senescence-like phenomenon in HeLa cells. CldU, BrdU, and IdU similarly induced the morphology of senescent cells and typical senescence markers. Thymidine analogues other than 5-halogenated forms caused only cell death. BrdU efficiently killed the cells in cooperation with irradiation with light and a brief treatment with Hoechst 33258, but CldU did not at all. 5-Halogenated thymidine analogues were thus shown to be specific inducers of cellular senescence in mammalian cells.  相似文献   

11.
Novel thymidine analogue triphosphates, which have an sp3-hybridized carbon at the C5 alpha-position with amino-linker arms, a methyl ester, or a carboxyl group at the C5 sidearm, were good substrates for primer-extension reactions by DNA polymerase from Pyrococcus kodakaraensis (KOD Dash DNA polymerase), yielding exclusively full-length products. The resulting modified DNA was further allowed to react with a functional molecule such as fluorescein isothiocyanate. By contrast, only truncated products were formed from the thymidine analogue substrate bearing the amino-linker arm or the negatively charged carboxyl group using Taq, Tth DNA polymerase, or DNA polymerase I from E. coli (Klenow fragment). The results indicate either that the thymidine analogue was not accepted by the enzymes, or that the polymerases could not extend the products, once the analogue had been incorporated, depending on the type of the analogue. A conventional thymidine analogue bearing an aminopropenyl group at the C5-position was accepted by all enzymes, among which KOD Dash DNA polymerase showed the highest activity for the polymerization with this analogue. Templates bearing the thymidine analogues in place of one thymidine residue were read by KOD Dash, Taq, Tth DNA polymerases, and the Klenow fragment giving the full-length product. KOD Dash DNA polymerase could expand structural diversities of substrates that can be used to prepare modified DNAs.  相似文献   

12.
Methylphosphonic dichloride was used to prepare protected deoxyribonucleoside 3'-methylphosphonate beta-cyanoethyl esters, d-[(MeO)2Tr]NpCNEt, and protected oligonucleoside methylphosphonates in solution. Reaction of d-[(MeO)2Tr]N with methylphosphonic dichloride gives d-[(MeO)2Tr]NpCl. The phosphonylation and subsequent esterification or condensation reactions are each complete within 60 min. The products are readily purified by "flash chromatography" on silica gel columns. d-[(MeO)2Tr]NpCl, or its tetrazole derivative, d-[(MeO)2Tr]Nptet, were tested as intermediates for the synthesis of oligothymidine methylphosphonates on a silica gel polymer support. The average yield per coupling step was 76% and did not increase with addition of more d-[(MeO)2Tr]TpCl. The formation of (5'-5') linked thymidine dimers indicated that the thymidine monomers are clustered closely together on the support. When N is ibuG, the yield for the coupling step on the support is very low. This may be due to steric hindrance of the 3'-phosphonate group by the N-2 isobutryl protecting group.  相似文献   

13.
4-Nitrophenyl and 2-napthyl monoesters of phenylphosphonic acid have been synthesized, and an enzyme catalyzing their hydrolysis was resolved from alkaline phosphatase of a commerical calf intestinal alkaline phosphatase preparation by extensive ion-exchange chromatography, chromatography on L-phenylalanyl-Sepharose with a decreasing gradient of (NH4) 2SO4, and gel filtration. Detergent-solubilized enzyme from fresh bovine intestine was purified after (NH4)2SO4 fractionation by the same technique. The purified enzyme is homogeneous by polyacrylamide gel electrophoresis and sedimentation equilibrium centrifugation. It has a molecular weight of 108,000, contains approximately 21% carbohydrate, and has an amino acid composition considerably different from that reported from alkaline phosphatase from the same tissue. The homogeneous intestinal enzyme, an efficient catalyst of phosphonate ester hydoolysis but not of phosphate monoester hydrolysis, was identified as a 5'-nucleotide phosphodiesterase by its ability to hydrolyze 4-nitrophenyl esters of 5'-TMP but not of 3'-TMP. Also consistent with this identification was the ability of the enzyme to hydrolyze 5'-ATP to 5'-AMP and PPi, NAD+ to 5'-AMP and NMN, TpT to 5'-TMP and thymidine, pApApApA to 5'-AMP, and only the single-stranded portion of tRNA from the 3'-OH end. Snake venom 5'-nucleotide phosphodiesterase also hydrolyzes phosphonate esters, but 3'-nucleotide phosphodiesterase of spleen and cyclic 3',5'-AMP phosphodiesterase do not. Thus, types of phosphodiesterases can be conveniently distinguished by their ability to hydrolyze phosphonate esters. As substrates for 5'-nucleotide phosphodiesterases, phosphonate esters are preferable to the more conventional esters of nucleotides and bis(4-nitrophenyl) phosphate because of their superior stability and ease of synthesis. Furthermore, the rate of hydrolysis of phosphonate esters under saturating conditions is greater than that of the conventional substrates. At substrate concentrations of 1 mM the rates of hydrolysis of phosphonate esters and of nucleotide esters are comparable and both superior to that of bis(4-nitrophenyl) phosphate.  相似文献   

14.
Boron neutron capture therapy (BNCT) is a chemoradio-therapeutic method for the treatment of cancer. It depends on the selective targeting of tumor cells by boron-containing compounds. One category of BNCT agents with potential to selectively target tumor cells may be thymidine derivatives substituted at the 3'-position with appropriate boron moieties. Thus, several thymidine analogues were synthesized with a carborane cluster bound to the 3'-position either through an ether or a carbon linkage. The latter are the first reported carborane-containing nucleosides in which the carboranyl entity is directly linked to the carbohydrate portion of the nucleoside by a carbon-carbon bond. Low but significant phosphorylation rates in the range of 0.18% that of thymidine were observed for the carbon-linked 3'-carboranyl thymidine analogues in phosphoryl transfer assays using recombinant preparations of thymidine kinases 1 (TK1) and thymidine kinases 2 (TK2). Some of the ether-linked 3'-carboranyl thymidine analogues appeared to be slightly unstable under acidic as well as phosphoryl transfer assay conditions and were, if at all, poor substrates for TK1.  相似文献   

15.
Abstract

Various methods of synthesis of metabolically stable phosphonate analogues of bisnucleoside oligophosphates containing two residues of methylenediphosphonic acid in the oligophosphate chain are studied. Phosphonate analogues of Ip4I and Ip5I are prepared.  相似文献   

16.
We developed a new protecting group, ie., cis-[4-[[(4-methoxytrityl)sulfenyl]oxy]tetrahydrofuran-3-yl]oxycarbonyl (MTFOC), which could be removed under neutral conditions involving the oxidative removal of the MMTrS group followed by the self-cyclization of the resulting intermediate. The introduction of the protecting group into the 5-hydroxyl group of a thymidine derivative and its deprotection were studied.  相似文献   

17.
Block condensation of MePOCI2 or MeP(NEt2)2 with appropriately protected tetra(thymidine methanephosphonates) of predetermined sense of chirality at asymmetric phosphonate centres gave two pairs of diastereomeric mixtures, namely (SpSpSpSpSpSpSp + SpSpSpRpSpSpSp) 5a and (RpRpRpRpRpRpRp + RpRpRpSpRpRpRp) 5b. A comparison of the CD spectra of 5a and 5b with those of octathymidylic acid (7) and a random mixture of diastereomers of octa(thymidine methanephosphonate) (6), and also a comparison of the Tm of complexes formed between 5a, 5b, 6 or 7, and pentadecadeoxyriboadenylic acid (8), indicates that octamer 5b and its complex with its complementary oligonucleotide has a well-ordered structure due to the 'outward' or 'pseudoequatorial' orientation of the methyl group of each internucleotide methanephosphonate function of Rp configuration. Results presented in this report clearly indicate that the stability of hybrids formed between octa(thymidine methanephosphonate) and pentadecadeoxyriboadenylic acid depends on the stereochemistry of each internucleotide methanephosphonate function and strongly suggests that stereoselective synthesis of P-chiral oligonucleotide analogues is an important goal.  相似文献   

18.
Novel 5'-norcarbocyclic adenine and guanine phosphonic acid analogues with 6',6'-difluorine moiety were designed and synthesized from commercially available epichlorohydrin 5. A regioselective Mitsunobu reaction successfully proceeded from an allylic functional group 16b at low reaction temperature in polar cosolvent to give purine phosphonate analogues 17 and 24, respectively. The purine nucleoside phosphonate and phosphonic acid analogues were subjected to antiviral screening against HIV-1. Adenine analogue 21 and its SATE prodrug 29 show significant anti-HIV activity in MT-4 cell lines.  相似文献   

19.
The vinyl phosphonate derivatives of uridine, cytidine, and cytosine arabinoside (ara-C) have been prepared through oxidation of appropriately protected nucleosides to the 5' aldehydes and Wittig condensation with [(diethoxyphosphinyl)methylidine]triphenylphosphorane. Dihydroxylation of these vinyl phosphonates with an AD-mix reagent generated the new 5',6'-dihydroxy-6'-phosphonates. After hydrolysis of the phosphonate esters and the various protecting groups, the six phosphonic acids were tested for their ability to serve as substrates for the enzyme nucleotide monophosphate kinase and for their toxicity to K562 cells.  相似文献   

20.
We describe the convenient synthesis of thymidine cyclic 3', 5'-phosphorofluoridate 6, which is superior to that previously reported. Our procedure is based on a sequence of reactions utilizing 3 as the key substrate. Similar sequence of reaction leads to the sulfur analogues of 6 the thymidine cyclic 3',5'-phosphorofluoridothioate 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号