首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma LH, FSH and testosterone concentrations were measured by radioimmunoassays in male crossbred Merino/Corriedale sheep from birth to 45 weeks of age. FSH levels were 11 and 22 ng/ml at birth, increased to peak levels (mean value of 47 ng/ml) at 5 weeks and fluctuated between 25 and 35 ng/ml for the next 40 weeks. Similarly, LH (less than 0-5 ng/ml) and testosterone (less than 38 ng/100 ml) levels were low at birth and were significantly elevated by 5 weeks of age. LH values varied betwen 0-9 and 3-0 ng/ml for the next 30 weeks and then a secondary rise occurred reaching levels of 2-4 ng/ml by the 41st week after birth. Concentrations of LH subsequently fell to levels observed in adult rams. Testosterone levels rose gradually between the 5th and the 25th week, and then increased rapidly to values of 270-517 ng/100 ml by the 41st week after birth, a time coincident with the peak LH levels. Histological examination of testicular biopsies demonstrated that Sertoli cell maturation occurred 17-21 weeks after birth and was followed by activation of spermatogenesis leading to the presence of spermatozoa in the seminiferous epithelium by 39-42 weeks of age.  相似文献   

2.
Serum levels of LH, total estrogen and progesterone were measured daily by radioimmunoassay during proestrus, estrus and early diestrus in five beagle bitches. Occurrence of the LH peak relative to the onset of estrus was quite variable ranging from 3 days before to 7 days after the onset of estrus. Serum LH levels were elevated for 3 days with a peak value of 25 ± 2 ng/ml reached 2.4 days after the start of estrus. LH levels were ≤ 2 ng/ml when measured at other times during the estrous cycle. Estrogen titers ranged from 84 ± 39 pg/ml at 9 days before the LH peak to 175 ± 15 pg/ml coincident with the LH peak. A broad estrogen peak was evident beginning 5 days before and continuing for 5 days after the LH peak. An estrogen surge was seen in 4 of 5 dogs immediately preceding or coincident with the LH peak suggesting that LH release in the bitch is triggered by a sharp elevation in estrogen levels. Serum progesterone levels rose from ≤ 5 ng/ml before the LH peak to 46 ± 6 ng/ml 6 days afterwards.  相似文献   

3.
Measurement of plasma progesterone, LH and FSH were made every 6 h during the first 6 days of pregnancy in the mouse. Plasma progesterone and LH were low on day 1, minimum values being recorded at 24 h post coitus. Concentrations of both these hormones started rising during the second half on day 2 with the rise continuing during day 3 to a progesterone peak of 25 ng/ml early on day 4 and an LH peak of 37 ng/ml late on day 4. Levels of progesterone fell during day 4 and LH during day 5 to approximately half their respective peak values and then remained relatively constant over the remainder of the measurement period. Levels of FSH, which were high early on day 1 (180 ng/ml), fell sharply by midday with a small rise late in the day followed by a decline during day 2 to a minimum level of 2 ng/ml at 48 h post coitus. Early on day 3 FSH values rose to 120 ng/ml then fell to 50-60 ng/ml during the next 6 h and remained relatively stable at this level during days 4 and 5. It is suggested that LH is concerned with progesterone production and maintenance of the corpus luteum whilst FSH is concerned with the production of oestrogen required for implantation in this species.  相似文献   

4.
The seasonal changes in testicular weight in the blue fox were associated with considerable variations in plasma concentrations of LH, prolactin, androstenedione and testosterone and in FSH-binding capacity of the testis. An increase in LH secretion and a 5-fold increase in FSH-binding capacity were observed during December and January, as testis weight increased rapidly. LH levels fell during March when testicular weight was maximal. Plasma androgen concentrations reached their peak values in the second half of March (androstenedione: 0.9 +/- 0.1 ng/ml: testosterone: 3.6 +/- 0.6 ng/ml). A small temporary increase in LH was seen in May and June after the breeding season as testicular weight declined rapidly before levels returned to the basal state (0.5-7 ng/ml) that lasted until December. There were clear seasonal variations in the androgenic response of the testis to LH challenge. Plasma prolactin concentrations (2-3 ng/ml) were basal from August until the end of March when levels rose steadily to reach peak values (up to 13 ng/ml) in May and June just before maximum daylength and temperature. The circannual variations in plasma prolactin after castration were indistinguishable from those in intact animals, but LH concentrations were higher than normal for at least 1 year after castration.  相似文献   

5.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

6.
Oestrous cycles of goats were synchronized hormonally. Immunoreactive oxytocin was undetectable (less than 0.1 ng/mg protein) in media from granulosa cells isolated before the LH surge for small (1-2 mm), medium (3-5 mm) and large (greater than 5 mm diameter) follicles when cultured for 24 h without or with added hormones. Granulosa cells from large and medium, but not small, follicles isolated 6-12 h after spontaneous preovulatory LH surges secreted high concentrations of oxytocin (4-12 ng/mg protein). Addition of PGE-2 (1 microgram/ml) caused a further significant (P less than 0.05) increase in oxytocin secretion by cultured granulosa cells, whereas PGF-2 alpha, FSH and LH were ineffective when added to culture media. Ovarian venous blood and granulosa cells were collected at 0, 6, 12 or 18 h after GnRH injection in hormonally synchronized goats. Peripheral serum LH values were increased significantly in all but 2 of 22 goats within 2 h of GnRH injection. At the earliest sampling time after GnRH (6 h), ovarian venous levels of oxytocin were increased significantly from basal levels of 0.4 pg/ml to 2.4 pg/ml. Oxytocin concentrations in follicular fluid increased from a basal value of 67 pg/ml to 155 pg/ml by 6 h and to 372 pg/ml by 18 h after GnRH injection. Oxytocin secretion by cultured granulosa cells was not increased significantly by 6 h (0.1 ng/mg protein) but rose to 1.4 and 3.5 ng/mg protein at 12 and 18 h, respectively. Approximately parallel increases occurred in progesterone in ovarian venous blood and granulosa cell culture media over the same time period. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In the brown hare, fertile mating takes place from the beginning of December to September. Pituitary and ovarian response to a monthly i.v. injection of 5 micrograms LHRH was studied from September 1983 to October 1984 in 2 groups of 6 hares. The basal concentrations of LH remained undetectable until the end of January, rose from 0.23 +/- 0.14 ng/ml from February to a maximum of 1.44 +/- 0.57 ng/ml in July. LHRH injection was always followed by a release of LH. Between September and December, the LH value peaked 15 min after injection and returned to basal concentrations 2 h later. From January, this pattern altered and a second peak of LH appeared 2 h after injection. Peak levels 15 min after LHRH were around 10 ng/ml between September and December, increased from 47.0 +/- 8.0 ng/ml in January to 106 +/- 33 ng/ml in July and decreased in August (69.4 +/- 10.6 ng/ml). The values of the second peak rose from 11.0 +/- 2.2 ng/ml in January to 90.6 +/- 12.4 ng/ml between March and July and decreased in August (24.5 +/- 5.1 ng/ml). The LH surge induced by LHRH was always followed by a transient rise in progesterone. During the breeding season, this progesterone secretion increased considerably. Ovulation was possible between January and August and the number of ovulating females was maximum between March and July. The amount and duration of progesterone secretion during the resulting pseudopregnancies increased during the breeding season.  相似文献   

8.
Blood samples were collected from primiparous sows via indwelling jugular cannulae at 15-min intervals for 12 h before and for 24 h (2 sows) or 48 h (10 sows) after weaning and then every 4 h until behavioural oestrus. Weaning to oestrus intervals ranged from 3 to 10 days and 2 sows showed no signs of oestrus and had not ovulated by Days 11 and 16 after weaning. Prolactin concentrations in plasma decreased significantly (P less than 0.001) and reached basal levels 1-2 h after weaning in all sows whilst plasma progesterone concentrations remained basal until approximately 30 h after the preovulatory LH surge in sows that ovulated. Elevated concentrations of prolactin or progesterone during the post-weaning period were, therefore, not responsible for delayed restoration of cyclicity. Overall, mean LH concentrations rose significantly (P less than 0.001) from 0.22 +/- 0.02 during the 12-h period before weaning to 0.38 +/- 0.03 ng/ml during the 12-h post-weaning period. After weaning, pulsatile and basal LH secretions were markedly increased for sows that showed an early return to oestrus (less than or equal to 4 days) compared with sows showing a longer weaning to oestrus interval but a correlation did not exist between either of these LH characteristics and the time taken to resume cyclicity. Mean LH concentrations before weaning were, however, inversely related (r = -0.649; P less than 0.05) to the weaning to oestrus interval. Overall, mean FSH concentrations rose significantly (P less than 0.001) from 151.1 +/- 6.2 (s.e.m.) ng/ml in the 12-h period immediately before weaning to 187.7 +/- 9.7 ng/ml in the subsequent 12-h period but there was no correlation between FSH concentrations, before or after weaning, and the interval from weaning to oestrus. However, a significant correlation was apparent between ovulation rate and peak concentrations of the rise in FSH after weaning (r = 0.746; P less than 0.05) and overall mean FSH values (r = 0.645; P less than 0.05). It is concluded that both LH and FSH concentrations in peripheral blood rose in response to removal of the suckling stimulus at weanling. The increase in LH pulse frequency associated with weaning was not directly related to the weaning to oestrus interval although a specific pattern of LH secretion was observed in sows showing an early return to oestrus (less than or equal to 4 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Jugular vein blood was collected daily from four mature ewes throughout anoestrus and the first oestrous cycle of the breeding season until 4 days after the second oestrus. The levels of oestrogen, progesterone and LH were determined by radioimmunoassay. There were fluctuations in the LH level throughout most of the observed anoestrous period with a mean plus or minus S.E. value of 2-3 plus or minus 0-9 ng/ml. High LH values of 20-0, 41-2 and 137-5 ng/ml were observed in three ewes on Day - 24 of anoestrus. A brief minor rise in progesterone level was also observed around this period. Progesterone levels were consistently low (0.11 plus or minus 0-01 ng/ml) before Day - 25 of anoestrus. A major rise occurred on Day - 12 of anoestrous and this was followed by patterns similar to those that have been previously reported for the oestrous cycle of the ewe. Random fluctuations of oestrogens deviating from a mean level of 4-40 plus or minus 0-1 pg/ml were observed during anoestrus and the mean level during the period from the first to the second oestrus was 5-2 plus or minus 0-3 pg/ml. A well-defined peak of 13-3 plus or minus 0-7 pg/ml was seen in all ewes on the day of the second oestrus. Results of the present study suggest that episodic releases of LH occur during anoestrus and periods of low luteal activity. The fluctuations in LH levels, as observed during the period of low luteal activity, i.e. before Day - 25 of anoestrus, were less pronounced during the periods of high luteal activity. The view that luteal activity precedes the first behavioural oestrus of the breeding season is supported.  相似文献   

10.
The release of LH in response to prostaglandin (PG) treatment of female rabbits in various reproductive states was compared with the surge following mating. Intracarotid infusion of PGE-2 or PGF-2alpha (0-3--900 microgram/h) into non-receptive and pseudopregnant does resulted in small, 2--4-fold elevations in jugular vein LH concentration. Similar doses of PGF-2alpha in oestrogen-pretreated, oestrous does stimulated a 13-fold increase in plasma LH levels. Mating resulted in a much larger release of LH, as plasma levels increased approximately 60-fold from 1-1 +/- 0-2 (S.E.M.) ng/ml to 67-8 +/- 10-5 ng/ml. These results indicate that PG can stimulate the hypothalamic-hypophysial axis to release LH in non-receptive, pseudopregnant and oestrogen-pretreated, oestrous rabbits.  相似文献   

11.
Two experiments were conducted to determine whether cannulation of the jugular vein in gilts alters serum concentrations of LH, FSH, prolactin (PRL) or cortisol (C). In Experiment 1, 12 crossbred prepubertal gilts weighing 95 +/- 1.3 kg were immobilized by snaring, and tygon tubing was threaded into the anterior vena cava through a 12-gauge needle inserted into the jugular vein. Five hours later, blood samples were drawn at 20-min intervals for 4 h (Day 0). Samples were also drawn at 20-min intervals for 4-h periods 24 h (Day 1) and 48 h (Day 2) after cannulation. Serum concentrations of LH were similar (P=0.26) among Day 0 (0.40 ng/ml), Day 1 (0.39 ng/ml) and Day 2 (0.34 ng/ml). Serum PRL was similar (P=0.07) among Day 0 (4.10 ng/ml), Day 1 (3.87 ng/ml) and Day 2 (3.43 ng/ml). Serum concentrations of C were greater (P < 0.001) on Day 0 (8.32 ng/ml) than Day 1 (4.48 ng/ml) or Day 2 (3.54 ng/ml). In Experiment 2, cannulas were placed in 29 prepubertal gilts. Two days after initial cannulation, six blood samples were drawn at 20-min intervals. Gilts were then immobilized by snaring, and a second cannulae was inserted into the contralateral vein. Five blood samples were taken at 2-min intervals during the second cannulation and then six samples were drawn at 20-min intervals. Serum LH and FSH were not altered by cannulation or elevated during the subsequent 2-h sampling period (P>0.05). In contrast, serum concentrations of PRL rose slowly (P<0.05) during cannulation and remained elevated for 60 min before returning to baseline. Serum concentrations of C rose within 6 min of cannulation, remained elevated for 30 min, and then declined over the next 90 min. From these two experiments, it appears that secretory patterns of LH and FSH can be accurately assessed immediately after cannulation in prepubertal gilts. Measurements of serum PRL and C that reflect nonstressed conditions, however, cannot be obtained until at least 2 h or 1 d after cannulation, respectively.  相似文献   

12.
This study examined the effect of 17 beta-estradiol (E2) on basal and luteinizing hormone (LH)-releasing hormone (LHRH)-stimulated gonadotropin secretion in 9 patients with Klinefelter's syndrome. Intramuscular injection of E2 (10 micrograms/kg/day during 5 days) induced a rapid decrease in follicle-stimulating hormone (FSH) and LH levels. The maximum suppression was observed on day 7 (D7) for FSH [median 9.7 mIU/ml (range 4.6-37.8) vs. 21.7 mIU/ml (range 12.2-56.9)] and on D2 for LH [median 13.6 mIU/ml (range 6.8-25.2) vs. 21.2 mIU/ml (range 13-54.7)]. E2 concentrations rose and reached their peak values on D3 [median 723 pmol/l (range 517-1,247.8) vs. 110.1 pmol/l (range 68.6-227.5) on D0]. These changes were followed by a subsequent rise in LH on D4 [36.7 mIU/ml (range 19.4-77.7)]. LH response to LHRH was higher during E2 treatment: median value of absolute peaks: 156.3 mIU/ml (range 56.7-188.6) on D4 vs. 64 mIU/ml (range 38.9-131) on DO. These results demonstrate the presence of a positive feedback in patients with Klinefelter's syndrome.  相似文献   

13.
Levels of luteinizing hormone (LH), estradiol-17 beta and progesterone were determined by specific radioimmunoassays in sera obtained from Beagle bitches during proestrus, estrus and diestrus. Concentrations of LH (expressed as NIH-LH-SI equivalents) were 2.8 plus or minus 0.1 ng/ml in proestrus, 35.5 plus or minus 10.0 ng/ml during early estrus and 2.2 plus or minus 0.1 ng/ml in early diestrus. Peak levels of estradiol-17beta (68.9 plus or minus 11.0 ng/ml) were detected 24 hr prior to the LH peak, declined rapidly and reached basal levels (17.8 plus or minus 6.3 ng/ml) by five days following the LH peak. Levels of progesterone were 1.7 plus or minus 0.3 ng/ml during proestrus, 3.5 plus or minus 0.3 ng/ml during early estrus and 23.3 plus or minus 2.8 ng/ml on day 5 after the LH peak . Progesterone levels remained elevated through day 28 of diestrus and pregnancy. A significant decrease (p smaller than 0.05) in levels of prosgesterone occurred between day 28 of pregnancy and one day prior to shelping (3.3 plus or minus 1.2 ng/ml, with a further decrease on the day of whelping (1.1 plus or minus 0.2 ng/ml). Levels of estradiol-17beta and LH did not change significantly (p smaller than 0.0k) during diestrus or pregnancy.  相似文献   

14.
1. Antler cycles of six adult male axis deer of southern Texas were relatively well synchronized within the herd. The old antlers were cast from December to March and regenerated antlers polished between March and June. The rutting season occurred in June and July. 2. LH and FSH exhibited little seasonal variation (LH 0.7-1.3 ng/ml; FSH 32-65 ng/ml). Prolactin levels were lowest in December (20 ng/ml) and highest in June (115 ng/ml). Testosterone concentrations exhibited a distinct seasonal pattern: minimum in December (0.1 ng/ml) and maximum in May (1.75 ng/ml). 3. After GnRH challenge (100 micrograms given i.m. in November), maximal LH levels (reached 40-60 min after injection), varied from 7.7 to 11.2 ng/ml, and T levels varied from 1.3 to 1.6 ng/ml. 4. Twenty I.U. of ACTH (given in March), elevated cortisol levels from 4-8 micrograms/dl (pretreatment) to 16-21 micrograms/dl (140 min post-administration).  相似文献   

15.
Serum FSH and testosterone concentrations reached maximum levels between 35 and 45 days of age, which coincided with the appearance of mature spermatozoa in the majority of seminiferous tubules. Spermatozoa were not observed in sections of the urethra until the age of 46 days. Serum LH concentrations were low (5-6 ng/ml) before Day 25, became highly variable (12-57 ng/ml) between Days 25 and 53 and remained consistently above 35 ng/ml thereafter. Serum prolactin levels rose significantly between 30 and 43 days of age. Maximum prolactin levels coincided with the start of accelerated growth in the prostate and seminal vesicle glands. Testicular weights relative to body weight reached a plateau by 35 days of age, while relative pituitary and adrenal weights decreased throughout the study period. It is suggested that spermatogenesis is not complete until FSH and testosterone reach maximum levels, while prolactin may be involved in the stimulation of accessory sex organ growth. The pronounced variation in serum LH concentrations during the maturation period may reflect a progressive change in the sensitivity of the hypothalamic-pituitary axis to the negative feedback of gonadal steroids.  相似文献   

16.
The ability of passive immunization against testosterone to increase sex steroid binding levels in plasma and thus to overcome the negative feedback of oestradiol-17 beta (E2) on LH secretion in underfed heifers was investigated. Dairy heifers were ovariectomized and divided in 3 groups: high energy diet (H group, n = 4), low energy diet (L group, n = 3) and low energy diet + E2 implants (LE2 group, n = 4). Twenty-four h before injection of bovine immunoglobulins, the mean concentrations of LH were not different between H and L groups. LH baseline was lower (0.8 vs 1.1 ng/ml, P less than 0.03) and the median number of LH pulses was higher (10 vs 5, P less than 0.03) in H than in L group. E2 markedly decreased (P less than 0.01) the mean and basal concentrations of LH (0.27 ng/ml), and number of LH pulses (0) in the LE2 group (P less than 0.05). After injection of anti-testosterone immunoglobulins in the L group, mean and basal LH concentrations tended to decrease. The median number of LH pulses in the L group rose 8 days after immunization (5 vs 7 on day -1 and day +8, P less than or equal to 0.05). Amplitude of pulses tended to decrease after injection (P = 0.08). In the LE2 group, the mean concentration and baseline of LH were not affected by passive immunization against testosterone, while pulses of LH appeared at day +1 and rose (P = 0.07) at day +8 after immunization with 3.5 pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

18.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

19.
Luteinizing hormone requirements for ovulation induction were studied in proestrous rats through detailed observation of the preovulatory surge, through various forms of LH injection under sodium pentobarbital blockade, and through estimation of LH uptake by the ovary. Blood LH levels in individual proestrous rats were obtained every 30 min and grouped according to their peak time (designated 0 h); mean LH levels higher than 7 and 5 ng/ml continued for 30 min and 2.5 h, respectively, the pituitary LH contents at 1400 and 2000 h on the day of proestrus were 2.1 and 0.7 micrograms, respectively, indicating that the amount of LH secreted during the surge was at least 1.4 micrograms. Single intravenous injections of 2 micrograms and 1 micrograms of pure rat LH (NIDDK-rLH-I-7; FSH and prolactin contaminations: 0.02% and less than 0.01%, respectively) to sodium pentobarbital-blocked rats induced ovulation in 4 out of 4 rats and 4 out of 6 rats, respectively, while 500 ng failed to induce ovulation in any (out of 7) rats. Two injections of 300 ng each with an interval of 20 min induced ovulation in 3 out of 8 rats, but if the interval was prolonged to between 30 and 120 min, 100% ovulation was obtained. Blood LH levels in these experiments indicated that a lower long-lasting LH level (about 5 ng/ml blood) is more important than a short, high level for ovulation induction. It was also shown that this level of LH could be given in separate doses if the interval was 30-120 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate endocrine mechanisms associated with the occasional occurrence of fertile oestrus during lactation in the high prolific Chinese Meishan (MS) breed, the incidence of oestrus and changes in plasma luteinizing hormone (LH) levels before and after oestradiol benzoate (OB, 15 micrograms/kg body weight) administration on day 22 was compared in 4 MS and 6 Large White (LW) sows. All sows exhibited oestrus in response to OB. Only 1 sow (MS) ovulated in response to OB, became pregnant and farrowed. Mean plasma LH levels before OB were low (MS: 0.38 +/- 0.06 ng LH/ml, LW: 0.29 +/- 0.04 ng LH/ml, ns). LH levels above 2 ng/ml (surge) occurred in 2/4 MS and 2/6 LW sows at 60 +/- 5 h after OB. The MS sow that ovulated had an LH surge level of 4.5 ng/ml plasma at 40 h after OB. These results indicate minor breed differences in the control of LH secretion during lactational anoestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号