首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We exposed competent cells of Diplococcus pneumoniae to high-molecular-weight donor deoxyribonucleate (DNA) and examined the state of the DNA bound to them in forms sensitive to deoxyribonuclease I. The portion elutable with 5 M guanidine hydrochloride was shown to be native, of much lower molecular weight (4 x 10(6) to 5 x 10(6)) than the donor, and as active in further transformation as sheared DNA of the same size. The portion resistant to release by guanidine hydrochloride was also shown to be native and active in transformation. These results, along with previous ones, imply that the breaks produced outside the cell are not at genetically specific sites. Furthermore, it was found that entry past the cell barrier to deoxyribonuclease could occur at 0 C by a process sensitive to ethylenediaminetetraacetate.  相似文献   

2.
The ultraviolet (UV)-induced formation of cyclobutyl pyrimidine dimers in Escherichia coli deoxyribonucleic acid (DNA) in vitro has been investigated in terms of the mechanism of inhibition by acridine dyes, the effect on dimer yield of specific singlet and triplet quenchers, and the mechanism of dimer formation. Our results indicate that (a) energy transfer is important in dimer reduction by acridines, (b) this transfer occurs from the singlet (S1) of DNA, and (c) at room temperature triplet quenchers do not reduce dimer yield in DNA.  相似文献   

3.
Concentrations of deoxyadenosine which have little effect on net ribonucleic acid (RNA) synthesis or on increase in cell mass selectively inhibit deoxyribonucleic acid (DNA) synthesis in Agmenellum quadruplicatum. Exogenously supplied deoxyadenosine, at concentrations above 10 mug/ml, stimulates DNA degradation. These results are correlated with a rapid loss in viability. Over a narrow concentration range (6-15 mug/ml), deoxyadenosine impairs the division process and induces the formation of elongated cells. Low exogenous concentrations of deoxyadenosine are readily incorporated into both DNA and RNA, with the major portion as DNA.  相似文献   

4.
The effect of bacteriophage SPO1 infection of Bacillus subtilis and a deoxyribonucleic acid (DNA) polymerase-deficient (pol) mutant of this microorganism on the synthesis of DNA has been examined. Soon after infection, the incorporation of deoxyribonucleoside triphosphates into acid-insoluble material by cell lysates was greatly reduced. This inhibition of host DNA synthesis was not a result of host chromosome degradation nor did it appear to be due to the induction of thymidine triphosphate nucleotidohydrolase. Examination of the host chromosome for genetic linkage throughout the lytic cycle indicated that no extensive degradation occurred. After the inhibition of host DNA synthesis, a new polymerase activity arose which directed the synthesis of phage DNA. This new activity required deoxyribonucleoside triphosphates as substrates, Mg2+ ions, and a sulfhydryl reducing agent, and it was stimulated in the presence of adenosine triphosphate. The phage DNA polymerase, like that of its host, was associated with a fast-sedimenting cell membrane complex. The pol mutation had no effect on the synthesis of phage DNA or production of mature phage particles.  相似文献   

5.
An experiment previously interpreted to show a ribonucleic acid requirement for propagation of deoxyribonucleic replication is reexamined and the earlier interpretation is shown to be incorrect.  相似文献   

6.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

7.
Several tests were devised to further characterize deoxyribonucleic acid (DNA) synthesis in toluenized Bacillus subtilis cells. Vigorous agitation of toluenized cells (localization test) demonstrated that the DNA replication is exclusively a cell-associated process. A DNA "repair" condition was also applied to toluenized cells and shown to be distinct from DNA replication in its DNA polymerase I dependency and its ability to synthesize DNA on template which is either cell associated or free, outside the cell. This repair condition was used in conjunction with the localization test to demonstrate the penetration of deoxyribonuclease I and possibly DNA polymerase I into toluenized cells. Therefore, we suggest that the localization test can be used to test the penetration of proteins into toluenized cells for both the DNA repair and replication processes.  相似文献   

8.
The deoxyrihonucleic acid (DNA) of chromatin undergoar depurinization on mild acid hydrolysis with a picric acid-formaldehyde mixture (Bouin's fluid). The apurinic acid thus formed is degraded by condensation with aniline and is lost from tissue sections, but ribonucleic acid (RNA) in nucleoli and cytoplasm is well preserved. Technique: Fi in Carnoy's fluid (ethanol:acetic acid 3:1 or ethanol:chloroform:acetic acid 6:3:1) or in aldehydes (10% formalin or 2.5% glutaraldehyde bsered to pH 7.0). Hydrolyse deparaEnii sections 12-24 hr at 27-50 C in Bouin's fluid, wash in distilled water, immerse in 25% (v/v) acetic acid, treat 1 hr at 27-30 C with 10% (v/v) dine in 25% acetic acid, wash in 25% acetic acid and then in water. Stain 10-40 min with 03% toluidine blue in 0.05 M potassium biphthalate bder (pH 4.0); rinse in distilled water, pass to 10% (w/v) ammonium molybdate for 1 min, rinse again in water and pass through tert-butanol and xylene to a synthetic resin. Chromatin and chromosomes are pale green; RNA in nucleoli and cytoplasm deep purple.  相似文献   

9.
The effects of deoxyribonucleic acid (DNA) synthesis inhibition brought about in four different ways-thymidine starvation, nalidixic acid, hydroxyurea, and dnaB mutation-were examined in isogenic strains of Escherichia coli K-12. Three parameters were examined to determine whether there are strict correlations among them: (i) the extent of DNA synthesis inhibition; (ii) cell survival; and (iii) the rate of breakage of DNA molecules. There was no significant correlation between the extent of DNA synthesis inhibition and the rate of viability loss caused by the four DNA synthesis inhibitors, nor was there a strict correlation between the rate of occurrence of single-strand breaks in DNA and loss of viability. During treatment with hydroxyurea (0.1 M), no viability loss was observed and little, if any, single-strand breakage of DNA occurred. Both thymidine starvation and nalidixic-acid (20 mug/ml) treatment resulted in viability loss and breakage of DNA. For these latter two inhibitors, the two events appeared to be associated because greater rates of both viability loss and DNA breakage were observed for nalidixic acid compared with thymidine starvation. However, viability loss need not be associated with extensive breakage of DNA as demonstrated with a temperature-sensitive DNA synthesis mutant; at 39 C, viability loss occurred at a high rate without significant DNA breakage. With the other agents, the amount of DNA breakage accumulated when a cell population has sustained an average of one lethal hit was estimated to be about 30 single-strand breaks per genome. Differences in chromosomal and episomal breakage rates were observed.  相似文献   

10.
Early log-phase cells of Mycoplasma gallisepticum A5969 were synchronized by holding in Eagle minimal essential medium (MEM) for 2 h. When transferred out of MEM into tryptose medium, the cells exhibited synchronous growth. Deoxyribonucleic acid (DNA) synthesis proceeded continuously during this growth but stopped during the period of cell division. One round of DNA replication was observed per cell doubling, and a unique region of DNA was found to be permanently bound to the membrane.  相似文献   

11.
Bacillus megaterium cells have been examined during outgrowth for their macromolecular content, ability to undergo microcycle sporulation, the time of their growth division, the time of deoxyribonucleic acid (DNA) replication initiation, and their ability to synthesize DNA after transfer to sporulation medium. The increase in total DNA content of the cells increased discontinuously beginning at 90 min. Thymidine incorporation became insensitive to chloramphenicol between 90 and 105 min of outgrowth. At 90 min the cells acquired the ability to undergo microcycle sporulation and the degree of sporulation depended on the time spent in outgrowth, with maximal sporulation occurring at 180 min. During outgrowth, cells underwent one synchronous growth division beginning at 225 min and ending at 270 min. Outgrowing cells were not able to continue DNA synthesis after transfer to sporulation medium. The data suggest that DNA replication starts before cells are able to undergo microcycle sporulation; however, the initiation of replication may not be the only requirement for microcycle sporulation.  相似文献   

12.
Two mammalian cell lines, Chinese hamster ovary (CHO) which can recover colony-forming ability between fractionated doses of ultraviolet light (UV), and Chinese hamster B-14FAF28 which cannot recover, were tested for the ability to bypass UV-induced photoproducts in DNA during postirradiation DNA synthesis. The molecular weight distributions of newly synthesized DNA in UV-irradiated populations of both cell lines showed evidence for photoproduct bypass. Hence, the bypass mechanism does not correlate with recovery after UV.  相似文献   

13.
Evidence is presented that poxvirus deoxyribonucleic acid (DNA) synthesis required concurrent protein synthesis. The protein requirement in question can be distinguished from viral-induced thymidine kinase and DNA polymerase by virture of the instability of its messenger ribonucleic acid and its stoichiometric rather than catalytic relation to DNA synthesis. The protein(s) required did accumulate in the presence of fluorodeoxyuridine, an inhibitor of DNA synthesis, and, thus, appeared to be an "early" poxvirus function. The protein(s) was stable since it did function several hours after its synthesis had been terminated by puromycin. Two possible roles for such a protein requirement are discussed.  相似文献   

14.
Yeast cells of mating type α excrete a sex factor which inhibits cell division and deoxyribonucleic acid replication but not ribonucleic acid or protein synthesis in cells of opposite mating type a.  相似文献   

15.
Osmotically shocked spheroplasts from Saccharomyces cerevisiae incorporated deoxynucleoside triphosphates specifically into double-stranded nuclear and mitochondrial deoxyribonucleic acid (DNA). Results with this in vitro system for cells with and without mitochondrial DNA were compared. Strains lacking mitochondrial DNA were used to study nuclear DNA replication. With a temperature-sensitive mutant defective in DNA replication in vivo, DNA synthesis in vitro was temperature sensitive as well. The product of synthesis with all strains after very short labeling times consisted principally of short fragments that sedimented at approximately 4S in alkali; with longer pulse times or a chase with unlabeled nucleotides, they grew to a more heterogenous size, with an average of 6 to 8S and a maximum of 15S. There was little, if any, integration of these DNA fragments into the high-molecular-weight nuclear DNA. Analysis by CsCl density gradient centrifugation after incorporation of bromodeoxyuridine triphosphate showed that most of the product consisted of chains containing both preexisting and newly synthesized material, but there was also a small fraction (ca. 20%) in which the strands were fully synthesized in vitro. (32)P-label transfer ("nearest-neighbor") experiments demonstrated that at least a part of the material synthesized in vitro contained ribonucleic acid-DNA junctions. DNA pulse-labeled in vivo in a mutant capable of taking up thymidine 5'-monophosphate, sedimented in alkali at 4S, as in the case of the in vitro experiments.  相似文献   

16.
A new type of temperature-sensitive deoxyribonucleic acid (DNA) synthesis mutant, which can divide without a completion of DNA replication, was isolated from a thymidine-requiring Escherichia coli strain by means of photo-bromouracil selection after nitrosoguanidine mutagenesis. In this mutant, in spite of the fact that DNA synthesis stopped immediately after the temperature shift from 30 to 41 C, cells could continue to divide, though at a reduced rate. This cell division without DNA synthesis at 41 C is further supported by the following results. (i) Cell division took place at high temperature without addition of thymidine but not at all at 30 C. The parent strain of the mutant did not divide at 41 C without thymidine. (ii) Smaller cells isolated from the culture grown at 41 C did not contain DNA. This was shown by chemical analysis of the smaller cells and on electron micrographs. Ability of cells to divide was examined according to sizes of cells. By using the culture at 30 C, cells of various sizes were separated by means of sucrose-density gradient centrifugation. It was found that all cell fractions, including the smallest one, could divide at high temperature. These results suggest that in this mutant the completion of DNA replication is not required for triggering cell division at high temperature. Heat sensitivity of a factor which links cell division with DNA replication appears to be responsible. Some possible mechanisms of the coordination between cell division and DNA replication are discussed.  相似文献   

17.
Prior treatment of Escherichia coli with nalidixic acid in nutritionally complete medium altered the subsequent pattern of deoxyribonucleic acid (DNA) synthesis normally observed in nutritionally deficient medium. Transfer of E. coli 15 TAU to an amino acid- and pyrimidine-deficient medium usually resulted in a 40 to 50% increase in DNA content. Previous treatment with nalidixic acid caused a 200 to 300% increase in DNA content under these conditions. The extent of this DNA synthesis depended on the duration of prior exposure to nalidixic acid. The maximal rate of synthesis was obtained after a 40- to 60-min exposure to nalidixic acid and was two to three times that of the control. The induction of this excessive DNA synthesis was prevented by chloramphenicol or phenethyl alcohol, but the synthesis of this DNA was only partially sensitive to these agents. With E. coli TAU-bar, the rate of DNA synthesis, after removal of nalidixic acid, was similar to that of E. coli 15 TAU, but the maximal amount of DNA synthesized was 180 to 185% of that initially present. Cesium chloride density gradient analysis demonstrated that DNA synthesis after removal of nalidixic acid occurs by a semiconservative mode of replication. The density distribution of this DNA was similar to that obtained after thymine starvation. These results suggest that nalidixic acid treatment may induce additional sites for DNA synthesis in E.coli.  相似文献   

18.
The effects of pyrimidine limitation on chromosome replication and the control of ribosomal and transfer ribonucleic acid syntheses were investigated. Chromosome replication was studied by autoradiography of (3)H-thymine pulse-labeled cells. Pyrimidine limitation did not affect the fraction of cells incorporating radioactive thymine during a short pulse, indicating that when growth is limited by the supply of pyrimidine, the time required for chromosome duplication increases in proportion to the time required for cell duplication. Control of ribosomal RNA and transfer RNA syntheses was examined by chromatographing cell extracts on methylated albumin kieselguhr columns. When growth was controlled by carbon-nitrogen limitation, the ratio of tRNA to total RNA remained roughly constant at growth rates above 0.5 doublings per hour. During pyrimidine limitation, however, the control of rRNA synthesis was apparently dissociated from the control of tRNA synthesis: the ratio of tRNA to total RNA increased as the growth rate decreased.  相似文献   

19.
Deoxyribonucleic Acid Synthesis in FV-3-infected Mammalian Cells   总被引:1,自引:11,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) synthesis and virus growth in frog virus 3 (FV-3)-infected mammalian cells in suspension were examined. The kinetics of thymidine incorporation into DNA was followed by fractionating infected cells. The cell fractionation procedure separated replicating viral DNA from matured virus. Incorporation of isotope into the nuclear fraction was depressed 2 to 3 hr postinfection; this inhibition did not require protein synthesis. About 3 to 4 hr postinfection, there was an increase in thymidine incorporation into both nuclear and cytoplasmic fractions. The nuclear-associating DNA had a guanine plus cytosine (GC) content of 52%; unlike host DNA it was synthesized in the presence of mitomycin C, it could be removed from nuclei by centrifugation through sucrose, and it was susceptible to nuclease digestion. This nuclear-associating DNA appeared to be a precursor of cytoplasmic DNA of infected cells. The formation of the latter DNA class could be selectively inhibited by conditions (infection at 37 C or inhibition of protein synthesis) that permit continued incorporation of thymidine into nuclear-associating DNA. The cytoplasmic DNA class also had a GC content of 52%, was resistant to nuclease degradation, and its sedimentation profile in sucrose gradients corresponded to that of infective virus. Contrary to previous reports, we found that (i) viral DNA synthesis can continue in the absence of concomitant protein synthesis, and (ii) viral DNA synthesis is not abolished at 37 C. The temperature lesion in FV-3 replication appeared to be in the packaging of DNA into the form that appears in the cytoplasmic fraction of disrupted cells.  相似文献   

20.
The deoxyribonucleic acid (DNA) polymerase of Rous sarcoma virus synthesizes both single- and double-stranded DNA, utilizing the ribonucleic acid (RNA) of the viral genome as the initial template. Results of pulse-chase experiments indicate that the single-stranded DNA serves as unconserved template and precursor for the synthesis of double-stranded DNA. The latter reaction is apparently initiated in association with the viral RNA and may involve a partially double-stranded intermediate form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号