首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coevolution in mutualistic symbiosis can yield, because the interacting partners share common interests, to coadaptation: hosts perform better when associated with symbionts of their own locality than with others coming from more distant places. However, as the two partners of a symbiosis might also experience conflicts over part of their life cycle, coadaptation might not occur for all life‐history traits. We investigated this issue in symbiotic systems where nematodes (Steinernema) and bacteria (Xenorhabdus) reproduce in insects they have both contributed to kill. Newborn infective juveniles (IJs) that carry bacteria in their intestine then disperse from the insect cadaver in search of a new host to infect. We ran experiments where nematodes coinfect insects with bacteria that differ from their native symbiont. In both Steinernema carpocapsae/Xenorhabdus nematophila and Steinernema feltiae/Xenorhabdus bovienii symbioses, we detected an overall specificity which favours the hypothesis of a fine‐tuned co‐adaptation process. However, we also found that the life‐history traits involved in specificity strongly differ between the two model systems: when associated with strains that differ too much from their native symbionts, S. carpocapsae has low parasitic success, whereas S. feltiae has low survival in dispersal stage.  相似文献   

2.
Bacterial symbionts can affect several biotic interactions of their hosts, including their competition with other species. Nematodes in the genus Steinernema utilize Xenorhabdus bacterial symbionts for insect host killing and nutritional bioconversion. Here, we establish that the Xenorhabdus bovienii bacterial symbiont (Xb-Sa-78) of Steinernema affine nematodes can impact competition between S. affine and S. feltiae by a novel mechanism, directly attacking its nematode competitor. Through co-injection and natural infection assays we demonstrate the causal role of Xb-Sa-78 in the superiority of S. affine over S. feltiae nematodes during competition. Survival assays revealed that Xb-Sa-78 bacteria kill reproductive life stages of S. feltiae. Microscopy and timed infection assays indicate that Xb-Sa-78 bacteria colonize S. feltiae nematode intestines, which alters morphology of the intestine. These data suggest that Xb-Sa-78 may be an intestinal pathogen of the non-native S. feltiae nematode, although it is a nonharmful colonizer of the native nematode host, S. affine. Screening additional X. bovienii isolates revealed that intestinal infection and killing of S. feltiae is conserved among isolates from nematodes closely related to S. affine, although the underlying killing mechanisms may vary. Together, these data demonstrate that bacterial symbionts can modulate competition between their hosts, and reinforce specificity in mutualistic interactions.  相似文献   

3.
The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The “foraging strategy” paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs’ symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission.  相似文献   

4.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

5.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

6.
Entomopathogenic nematodes (EPNs) are small worms whose ecological behaviour consists to invade, kill insects and feed on their cadavers thanks to a species-specific symbiotic bacterium belonging to any of the genera Xenorhabdus or Photorhabdus hosted in the gastro-intestinal tract of EPNs. The symbiont provides a number of biological functions that are essential for its EPN host including the production of entomotoxins, of enzymes able to degrade the insect constitutive macromolecules and of antimicrobial compounds able to prevent the growth of competitors in the insect cadaver. The question addressed in this study was to investigate whether a mammalian pathogen taxonomically related to Xenorhabdus was able to substitute for or “hijack” the symbiotic relationship associating Xenorhabdus and Steinernema EPNs. To deal with this question, a laboratory experimental model was developed consisting in Galleria mellonella insect larvae, Steinernema EPNs with or without their natural Xenorhabdus symbiont and Yersinia pseudotuberculosis brought artificially either in the gut of EPNs or in the haemocoel of the insect larva prior to infection. The developed model demonstrated the capacity of EPNs to act as an efficient reservoir ensuring exponential multiplication, maintenance and dissemination of Y. pseudotuberculosis.  相似文献   

7.
Isolation and identification of native nematode-bacterial associations in the field are necessary for successful control of endemic pests in a particular location. No study has yet been undertaken to recover and identify EPN in metropolitan France. In the present paper, we provide results of a survey of EPN and their symbiotic bacteria conducted in Hérault and Gard regions in Southern France. Molecular characterization of isolated nematodes depicted three different Steinernema species and one Heterorhabditis species, H. bacteriophora. Steinernema species recovered were identified as: S. feltiae and S. affine and an undescribed species. Xenorhabdus symbionts were identified as X. bovienii for both S. feltiae and S. affine. Phylogenetic analysis placed the new undescribed Steinernema sp. as closely related to S. arenarium but divergent enough to postulate that it belongs to a new species within the “glaseri-group”. The Xenorhabdus symbiont from this Steinernema sp. was identified as X. kozodoii. All Heterorhabditis isolates recovered were diagnosed as H. bacteriophora and their bacterial symbionts were identified as Photorhabdus luminescens. Molecular characterization of these nematodes enabled the distinction of two different H. bacteriophora strains. Bacterial symbiontic strains of these two H. bacteriophora strains were identified as P. luminescens ssp. kayaii and P. luminescens ssp. laumondii.  相似文献   

8.
Selection imposed by coinfection may vary with the mechanism of within‐host competition between parasites. Exploitative competition is predicted to favor more virulent parasites, whereas interference competition may result in lower virulence. Here, we examine whether exploitative or interference competition determines the outcome of competition between two nematode species (Steinernema spp.), which in combination with their bacterial symbionts (Xenorhabdus spp.), infect and kill insect hosts. Multiple isolates of each nematode species, carrying their naturally associated bacteria, were characterized by (1) the rate at which they killed insect hosts, and by (2) the ability of their bacteria to interfere with each other's growth via bacteriocidal toxins called “bacteriocins.” We found that both exploitative and interference abilities were important in predicting which species had a selective advantage in pairwise competition experiments. When nematodes carried bacteria that did not interact via bacteriocins, the faster killing isolate had a competitive advantage. Alternatively, nematodes could gain a competitive advantage when they carried bacteria able to inhibit the bacteria of their competitor. Thus, the combination of nematode/bacterial traits that led to competitive success depended on which isolates were paired, suggesting that variation in competitive interactions may be important for maintaining species diversity in this community.  相似文献   

9.
The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate and species‐specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species‐specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal‐intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species‐specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by theirSteinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces.  相似文献   

10.
Xenorhabdus spp., are gram-negative bacterial symbionts of entomopathogenic nematodes in the genus Steinernema. A specialized and intimate relationship exists between nematode and bacteria, affecting many of their life history traits, such as nutrition, dispersal, host-finding, foraging and defense from biotic and abiotic factors. Xenorhabdus currently comprises more than 20 species isolated from Steinernema spp. with diverse host range, host foraging behavior, reproductive modes and environmental tolerance. Xenorhabdus phylogenies have historically been based on 16s rDNA sequence analyses, and only recently has data from housekeeping genes been employed. The prevalence of lateral gene transfer among bacteria calls for a wider perspective when considering their phylogeny. With the increasing number of Xenorhabdus species and strains, various perspectives need to be considered for investigating the evolutionary history of these nematode bacterial symbionts, In this study, we reconstruct the evolutionary histories of 30 species of Xenorhabdus considering the traditional 16s rDNA gene region as well as the housekeeping genes recA and serC. Datasets were analyzed individually and then combined, using a variety of phylogenetic criteria.  相似文献   

11.
The symbiotic interaction between Steinernema carpocapsae and Xenorhabdus nematophila was investigated by comparing the reproduction, morphology, longevity, behavior, and efficacy of the infective juvenile (IJ) from nematodes reared on mutant or wild-type bacterium. Nematodes reared on the mutant X. nematophila HGB151, in which an insertion of the bacterial gene, rpoS, eliminates the retention of the bacterium in the intestinal vesicle of the nematode, produced IJs without their symbiotic bacterium. Nematodes reared on the wild-type bacterium (HGB007) produced IJs with their symbiotic bacterium. One or the other bacterial strain injected into Galleria mellonella larvae followed by exposing the larvae to IJs that were initially symbiotic bacterium free produced progeny IJs with or without their Xenorhabdus-symbiotic bacterium. The two bacterial strains were not significantly different in their effect on IJ production, sex ratio, or IJ morphology. IJ longevity in storage was not influenced by the presence or absence of the bacterial symbiont at 5 and 15 °C, but IJs without their bacterium had greater longevity than IJs with their bacterium at 25 and 30 °C, suggesting that there was a negative cost to the nematode for maintaining the bacterial symbiont at these temperatures. IJs with or without their symbiotic bacterium were equally infectious to Spodoptera exigua larvae in laboratory and greenhouse and across a range of soil moistures, but the absence of the bacterial symbiont inhibited nematodes from producing IJ progeny within the host cadavers. In some situations, such as where no establishment of an alien entomopathogenic nematode is desired in the environment, the use of S. carpocapsae IJs without their symbiotic bacterium may be used to control some soil insect pests.  相似文献   

12.
In experimentally infected insects, the sex ratio of first generation nematodes of five species of Steinernema was female-biased (male proportion 0.35-0.47). There was a similar female bias when the worms developed in vitro (0.37-0.44), indicating that the bias in these species is not due to a lower rate of infection by male infective juveniles (IJs). Experimental conditions influenced the proportion of males establishing in insects, indicating that male and female IJs differ in their behaviour. However, there was no evidence that males are the colonising sex in any species, contrary to what has previously been proposed. Time of emergence from the host in which the nematodes had developed influenced sex ratios in experimental infections. In three species (Steinernema longicaudum, Steinernema glaseri and Steinernema kraussei), early emerged nematodes had a higher proportion of males than those that emerged later, with the reverse trend for Steinernema carpocapsae and Steinernema feltiae. In a more detailed in vitro study of S. longicaudum, the proportion of males was similar whether or not the nematodes passed through the developmentally arrested IJ stage, indicating that the female bias is not due to failure of males to exit this stage. The sex ratio in vitro was independent of survival rate from juvenile to adult, and was female-biased even when all juveniles developed, indicating that the bias is not explained by failure of males to develop to adults. The female-biased sex ratio characteristic of Steinernema populations appears to be present from at least the early juvenile stage. We hypothesise that the observed female bias is the population optimal sex ratio, a response to cycles of local mate competition experienced by nematodes reproducing within insect hosts interspersed with periods of outbreeding with less closely related worms following dispersal.  相似文献   

13.
The rhabditid nematodes Steinernema carpocapsae and Steinernema feltiae are used in biological control of insect pests. Mass production is done in liquid culture media pre-incubated with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, before nematode dauer juveniles (DJs) are inoculated. As a response to food signals produced by the bacterial symbionts, the DJs exit from the developmentally arrested dauer stage (they recover development) and grow to adults, which produce DJ offspring. Variable DJ recovery after inoculation often causes process failure due to non-synchronous population development and low numbers of adult nematodes. This contribution investigated the influence of the bacterial cell density on DJ recovery and development to adults. At higher density of 1010 bacterial cells ml−1, a higher percentage of DJ recovery was induced, and adults occurred earlier in both Steinernema spp. than at lower density of 109 and 108 cells ml−1. Xenorhabdus symbionts produce phase variants. Recovery in bacteria-free supernatants was lower than in supernatants containing bacterial cells for both primary and secondary phase Xenorhabdus spp. and lower in secondary than in primary phase supernatants or cell suspensions. In general, recovery was lower for Steinernema feltiae and the time at which 50% of the population had recovered after exposure to the food signal was longer (RT50 = 17.1 h) than for Steinernema carpocapsae (RT50 = 6.6 h). Whereas >90% S. carpocapsae DJs recovered in hemolymph serum of the lepidopteran insect Galleria mellonella, recovery of S. feltiae only reached 31%. Penetration into a host insect prior to exposure to the insect’s food signal did not enhance DJ recovery. Consequences for liquid culture mass production of the nematodes and differences between species of the genera Steinernema and Heterorhabditis are discussed.  相似文献   

14.
Steinernema spp. third-stage infective juveniles (IJs) play a key role in the symbiotic partnership between these entomopathogenic nematodes and Xenorhabdus bacteria. Recent studies suggest that Steinernema carpocapsae IJs contribute to the nutrition and growth of their symbionts in the colonization site (vesicle) [Martens, E.C. and Goodrich-Blair, H., 2005. The S. carpocapsae intestinal vesicle contains a sub-cellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cellular Microbiol. 7, 1723-1735.]. However, the morphological and physiological interactions between Xenorhabdus symbionts and Steinernema IJs are not understood in depth. This study was undertaken to assess the influence of culture conditions and IJ age on the structure, nutrition, and symbiont load (colonization level) of S. carpocapsae vesicles. Our observations indicate the vesicles of axenic IJs are shorter and wider than those of colonized IJs. Moreover, as colonized IJs age the vesicle becomes shorter and narrower and bacterial load declines. The colonization proficiency of several bacterial metabolic mutants was compared between two cultivation conditions: in vitro on lipid agar and in vivo in Galleria mellonella insects. Colonization defects were generally less severe in IJs cultivated in vivo versus those cultivated in vitro. However, IJs from both cultivation conditions exhibited similar declining bacterial load over time. These results suggest that although the vesicle forms in the absence of bacteria, the presence of symbionts within the vesicle may influence its fine structure. Moreover, these studies provide further evidence in support of the concept that the conditions under which steinernematid nematodes are cultivated and stored affect the nutritive content of the vesicle and the bacterial load, and therefore have an impact on the quality of the nematodes for their application as biological control agents.  相似文献   

15.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

16.
All phloem‐feeding Homoptera possess symbiotic microorganisms. Although the phylogenetic position and anatomical location of the micro‐ organisms differ, the underlying theme of the symbiosis is the same; the microorganisms improve the nutritional quality of the diet through the provision of essential amino acids. The symbiosis has been well documented in aphids, but little information is available from other homopteran groups. The impact of the loss of bacterial symbionts in the pea aphid Acyrthosiphon pisum Harris and eukaryotic yeast‐like symbionts in the Asian rice brown planthopper Nilaparvata lugens Stål was examined in parallel. The weight and relative growth rate of aphids and planthoppers was significantly reduced by symbiont loss, and characteristic features of aposymbiotic pea aphids, so‐called ‘metabolic signatures’, were, for the first time, observed in aposymbiotic N. lugens. For example, the amount of protein per unit fresh weight was reduced by 26 and 10%, and the free amino acid levels increased 1.8‐ and 1.4‐fold, in aposymbiotic A. pisum and N. lugens, respectively. In addition, the concentration of the amino acid glutamine was elevated in the tissues of aposymbiotic insects. The data are discussed in the context of our current understanding of the nutritional role of the symbiosis and the mechanisms of nitrogen metabolism in the two insect species. It is concluded that the metabolic adjustments of the insects to symbiont loss are broadly equivalent.  相似文献   

17.
18.
《Journal of Asia》2022,25(1):101874
Virulence and invasion efficiency of the three entomopathogenic nematodes, Heterorhabditis bacteriophora, Steinernema carpocapsae and S. feltiae against the potato tuber moth (PTM), Phthorimaea operculella was evaluated. Also evaluated were the sex ratio of Steinernema spp. and host stages to determine if 1) the developmental stage of the host affects sex ratio of nematodes; 2) infective juveniles (IJs) concentration affects sex ratio in host developmental stages and 3) the establishment of IJs is affected by developmental stages of host. The PTM pre-pupa and pupa were exposed to IJs in filter substrate petri dish bioassays. By increasing the IJs concentrations, the number of established Steinernema spp. in both PTM stages increased and only decreased at the highest concentration. No reduction in established nematode numbers at the highest concentration was observed for H. bacteriophora. Sex ratio of S. carpocapsae in pre-pupa was affected by IJ concentration. PTM was more susceptible to Steinernema spp. than H. bacteriophora. Pre-pupa were more susceptible to S. feltiae but S. carpocapsae recorded as the most virulent EPN on pupa. Invasion efficiencies were similar for Steinernema and considerably higher than for H. bacteriophora. Despite a higher invasion efficiency of Steinernema into pupae, mortality was lower compared to pre-pupa No correlation was recorded between the invasion efficiencies of the EPNs and mortalities of PTM. The results showed that the invasion efficiency is not appropriate criterion to reflect the virulence of studied EPNs. Compared to H. bacteriophora both tested Steinernema spp. were good candidates for further studies as biocontrol agents of PTM.  相似文献   

19.
There is evidence of competition within and between helminth species, but the mechanisms involved are not well described. In interference competition, organisms prevent each other from using the contested resource through direct negative interactions, either chemical or physical. Steinernema spp. are entomopathogenic nematodes; they enter a living insect host which they kill and consume with the aid of symbiotic bacteria. Several studies have demonstrated intra- and interspecific competition in Steinernema, mediated by a scramble for resources and by incompatibility of the bacterial symbiont. Here we describe a mechanism by which male Steinernema may compete directly for resources, both food (host) and females, by physically injuring or killing members of another species as well as males of their own species. A series of experiments was conducted in hanging drops of insect haemolymph. Males of each of four species (Steinernemalongicaudum, Steinernemacarpocapsae, Steinernemakraussei and Steinernemafeltiae), representing three of the five phylogenetic clades of the genus, killed each other. Within 48 h, up to 86% of pairs included at least one dead male, compared with negligible mortality in single male controls. There was evidence of intraspecific difference: one strain of S. feltiae (4CFMO) killed while another (UK76) did not. Males also killed both females and males of other Steinernema spp. There was evidence of a hierarchy of killing, with highest mortality due to S. longicaudum followed by S. carpocapsae, S. kraussei and S. feltiae. Wax moth larvae were co-infected with members of two Steinernema spp. to confirm that killing also takes place in the natural environment of an insect cadaver. When insects were co-infected with one infective juvenile of each species, S. longicaudum males killed both S. feltiae UK76 and Steinernema hermaphroditum. Wax moths co-infected with larger, equal numbers of S. longicaudum and S. feltiae UK76 produced mainly S. longicaudum progeny, as expected based on hanging drop experiments.  相似文献   

20.
The bacterial species of the genus Xenorhabdus in the family Enterobacteriaceae have a mutualistic association with steinernematid entomopathogenic nematodes (EPNs), which have been used as biological control agents against soil insect pests. In this study we present the genetic and phenotypic characterizations of the Xenorhabdus species isolated from steinernematid nematodes in Japan. The 18 Japanese Xenorhabdus isolates were classified into five bacterial species based on 16S ribosomal RNA (16S rRNA) gene sequences: Xenorhabdus bovienii, Xenorhabdus hominickii, Xenorhabdus indica, Xenorhabdus ishibashii, and Xenorhabdus japonica. There was no genetic variation between the 16S RNA sequences among the three X. ishibashii isolates, 0–0.1% variation among the five X. hominickii isolates, and 0–0.5% among the eight X. bovienii isolates. Phenotypic characterization demonstrated that representative isolates of the five bacterial species shared common characteristics of the genus Xenorhabdus, and only X. hominickii isolates produced indole. Symbiotic association and co-speciation of Xenorhabdus bacteria with Steinernema nematodes from Japan are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号