首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrated biological process for olive mill wastewater treatment   总被引:1,自引:0,他引:1  
The biological process for OMW treatment is based on an aerobic detoxification step followed by methanization step and aerobic post-treatment.The first aerobic detoxification step of OMW supplemented with sulfate and ammonium was carried out by the growth of Aspergillus niger in a bubble column. This step decreased OMW toxicity and increased its biodegradability because of phenolic compounds degradation. Growth of A. niger resulted in 58% COD removal, with production of biomass containing 30% proteins (w/w). Filtration of OMW was enhanced by this fermentation because the suspended solids were trapped in the mycelium. The filtrate liquid was then methanized using an anaerobic filter packed with flocoor. This reactor showed a short start up and a good stability. COD removal was around 60% and the methane yield (1 CH4/g COD removed) was close to the theoretical yield.The anaerobic filter effluent was treated in an activated sludge fluidized reactor containing olive husk as a packing material. Husks were maintained in fluidization state by the aeration. This step induces COD removal at 45% and sludge (up to 2 g/dm3).The entire process allowed a global COD reduction up to 90%; however, the black colour due to polyphenolic compounds with high molecular weight persisted.  相似文献   

2.
A study of anaerobic digestion of piggery wastewater was carried out in a laboratory-scale sludge bed reactor as a secondary treatment. The effect of organic volumetric loading rates (BV) in the range of 1.0-8.1 g TCOD/ld on the process performance was evaluated. The best results were obtained at BV equal to or lower than 4 g TCOD/ld. At higher BV values, the removal efficiency of the process decreased suddenly. A linear relationship was found between the effluent SCOD and the TVFA/alkalinity ratio (P). A relationship was found among the different operational variables (BV , removal efficiency, effluent soluble COD, soluble COD removal rate (R), retention factor (phi), specific microbial growth rate (mu), methane production rate per volume of reactor and per volume of waste treated--QM and qM, respectively) and the corresponding regression equations were obtained. An increase of BV determined a decrease of removal efficiency, phi and qM and an increase of effluent soluble COD, mu, R and QM. The value of the maximum specific microbial growth rate (muM) determined through the equation that correlated BV and mu was found to be 0.19 d(-1). This value was of the same magnitude as those reported in other works of anaerobic digestion of piggery waste.  相似文献   

3.
Shin C  Lee E  McCarty PL  Bae J 《Bioresource technology》2011,102(21):9860-9865
The effect of influent DO/COD (dissolved oxygen/chemical oxygen demand) ratio on the performance of an anaerobic fluidized bed reactor (AFBR) containing GAC was studied. A high influent DO concentration was found to have adverse impacts on organic removal efficiency, methane production, and effluent suspended solids (SS) concentration. These problems resulted with a DO/COD ratio of 0.12, but not at a lower ratio of 0.05. At first organic removal appeared satisfactory at the higher DO/COD ratio at a hydraulic retention time of 0.30 h, but soon a rapid growth of oxygen-consuming zoogloeal-like organisms resulted, eventually causing high effluent SS concentrations. The influent DO also had an inhibitory effect, resulting in a long recovery time for adequate methanogenic activity to return after influent DO removal began. With the growing interest in anaerobic treatment of low COD wastewaters, the increased possibility of similar adverse DO effects occurring needs consideration.  相似文献   

4.

Background

A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses.

Results

The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate.

Conclusions

The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.
  相似文献   

5.
《Process Biochemistry》2007,42(3):466-471
The present study is an attempt to investigate if a long-term acclimation of digester contents to low-temperatures would improve wastewater treatment at low-temperatures similar to mesophilic ranges. The feasibility of low-temperature (15 °C) anaerobic treatment of synthetic wastewater in an upflow anaerobic sludge blanket reactor was studied using inoculum from a cattle manure digester adapted to 15 °C. The effect of varying hydraulic retention time was studied by decreasing the retention time from 7 days to 1 day. Under a constant temperature of 15 °C with a hydraulic retention time of 1 day and a corresponding loading rate of 7.2 g-chemical oxygen demand (COD)/l/day, 90–95% removal efficiency was achieved. The methane production of 250 l/kg-COD removed at standard temperature pressure (STP) is a major highlight of the study complementing the high treatment efficiency achieved. Loading rates >5 g-COD/l/day was accompanied by increase in effluent volatile fatty acids (VFA) concentrations. Due to the presence of a high concentration of active granular sludge in the lower compartment of the reactor, 80% reduction of COD occurred within the granular bed of the reactor. Treatment of low strength wastewater for a short period showed 70–75% removal efficiencies with methane yield of 300 l/kg-COD removed. Specific methanogenic activity profiles of the anaerobic biomass revealed low-temperature (15 °C) optima, indicating selection of cold-active microorganisms during the acclimation process. The SMA assays also indicate the development of a putatively psychrophilic acetoclastic methanogenic community and biogas analysis showed 75% efficiency in energy recovery as methane.  相似文献   

6.
Abstract

This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.  相似文献   

7.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

8.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

9.
The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 °C for 10–12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562–2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)added. Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.  相似文献   

10.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

11.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

12.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

13.
Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l(-1)). Batch experiments with diluted SSL and pretreated SSL indicated a potential of 12-22 l methane per litre SSL, which corresponds to 0.13-0.22 l methane (g VS)(-1) and COD removal of up to 37%. COD removal in a mesophilic upflow anaerobic sludge blanket, UASB. reactor ranged from 10% to 31% at an organic loading rate, OLR, of 10-51 g (1 d)(-1) and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 1 (l(reactor d)(-1), with a yield of 0.05 l gas (g VS)(-1). These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations.  相似文献   

14.
The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO(2) emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, micro-aeration can result in significantly lower losses of methane in the effluent (<11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature.  相似文献   

15.
In order to enhance performances of organics removal and nitrification for the treatment of swine wastewater containing high concentration of organic solids and nitrogen than conventional biological nitrogen removal process, a submerged membrane bioreactor (MBR) was followed by an anaerobic upflow bed filter (AUBF) reactor in this research (AUBF–MBR process). The AUBF reactor is a hybrid reactor, which is the combination of an anoxic filter for denitrification and upflow anaerobic sludge blanket (UASB) for acid fermentation. In the AUBF–MBR process, it showed a considerable enhancement of the effluent quality in terms of COD removal and nitrification. The submerged MBR could maintain more than 14,000 mg VSS/L of the biomass concentration. Total nitrogen (T-N) removal efficiency represented 60% when internal recycle ratio was three times of flow-rate (Q), although the nitrification occurred completely. Although the volatile fatty acids produced in AUBF reactor can enhance denitrification rate, but the AUBF–MBR process showed reduction of overall removal efficiency of the nitrogen due to the reduction of carbon source by methane production in the AUBF reactor compared to that of theoretical nitrogen removal efficiency.

Long-term operation of the submerged MBR showed that the throughputs of the submerged MBR were respectively 74, 63, and 31 days at 10, 15, and 30 L/m2 h (LMH) of permeate flux. Resistance to filtration by rejected solid is the primary cause of fouling, however the priority of cake resistance (Rc) and fouling resistance (Rf) with respect to filtration phenomenon was different according to the amount of permeate flux. The submerged MBR, here, achieved a steady-state flux of 15 LMH at 0.4 atm. of trans-membrane pressure (TMP) but the flux can be enhanced in the future because shear force by tangential flow will be greater when multi-layer sheets of membrane were used.  相似文献   


16.
Anaerobic digesters have been responsible for the removal of large fraction of organic matter (mineralization of waste sludge) in conventional aerobic sewage treatment plants since the early years of domestic sewage treatment (DST). Attention on the anaerobic technology for improving the sustainability of sewage treatment has been paid mainly after the energy crisis in the 1970s. The successful use of anaerobic reactors (especially up-flow anaerobic sludge blanket (UASB) reactors) for the treatment of raw domestic sewage in tropical and sub-tropical regions (where ambient temperatures are not restrictive for anaerobic digestion) opened the opportunity to substitute the aerobic processes for the anaerobic technology in removal of the influent organic matter. Despite the success, effluents from anaerobic reactors treating domestic sewage require post-treatment in order to achieve the emission standards prevailing in most countries. Initially, the composition of this effluent rich in reduced compounds has required the adoption of post-treatment (mainly aerobic) systems able to remove the undesirable constituents. Currently, however, a wealth of information obtained on biological and physical-chemical processes related to the recovery or removal of nitrogen, phosphorus and sulfur compounds creates the opportunity for new treatment systems. The design of DST plant with the anaerobic reactor as core unit coupled to the pre- and post-treatment systems in order to promote the recovery of resources and the polishing of effluent quality can improve the sustainability of treatment systems. This paper presents a broader view on the possible applications of anaerobic treatment systems not only for organic matter removal but also for resources recovery aiming at the improvement of the sustainability of DST.  相似文献   

17.
Summary Neutralizing requirements for the anaerobic treatment of an acidic petrochemical effluent in a downflow anaerobic fixed bed reactor were examined. Neutralization (pH 6.0 with NaOH) of the effluent prior to digestion resulted in a Na+ concentration of over 3 g/l which was detrimental. Decreasing the Na+ concentration and subsequent replacement of NaOH by a mixture of Ca(OH)2, NaOH and KOH resulted in an increase in reactor performance. The addition of different alkalines resulted in the best loading rates thusfar applied in the anaerobic treatment of this petrochemical effluent. During the final stages of this study, the effluent (pH 3.95) was treated at a loading rate of 10.37 kg COD/m3. d (HRT=1.35 d) with more than 94% fatty acid removal.  相似文献   

18.
A new sewage treatment system was studied, which consisted of an anaerobic baffled filter reactor and the following aerobic post-treatment. One of the two studied systems (AN-I) was inoculated with psychrophilic digested sludge, the second one (AN-II) was operated without inoculation. The HRT in anaerobic and aerobic parts of the reactors were about 15 and 4 h, respectively. The temperature in both reactors varied during the year from 4.5 to 23 degrees C. All monitored parameters were removed with relatively high efficiencies (COD = 78.6-83.0%, BOD5 = 92.5-94.0% and SS = 80.9-92.7%). An intensive nitrification process was observed during the whole year in both reactors (under average temperature of 5.9 degrees C in January 2000, also). The average removal of the NH4-N varied during the year from 46.4% to 87.3%. In both systems a partial denitrification process was observed, too.  相似文献   

19.
Bioremediation of lipid-rich model wastewater was investigated in a packed bed biofilm reactor (anaerobic filter). A detailed study was conducted about the influence of fatty acid concentration on biomethanation of the high-fat liquid effluent of edible oil refineries. The biochemical methane potential (BMP) of the liquid waste was reported and maximum cumulative methane production at the exit of the reactor is estimated to be 785 ml CH4 (STP)/(g VSS added). The effects of hydraulic retention time (HRT), organic loading rate (OLR) and bed porosity on the cold gas efficiency or energy efficiency of the bioconversion process were also investigated. Results revealed that the maximum cold gas efficiency of the process is 42% when the total organic load is 2.1 g COD/l at HRT of 3.33 days. Classical substrate uninhibited Monod model is used to generate the differential system equations which can predict the reactor behavior satisfactorily.  相似文献   

20.
Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor   总被引:103,自引:0,他引:103  
Abstract Until now, oxidation of ammonium has only been known to proceed under aerobic conditions. Recently, we observed that NH4+ was disappearing from a denitrifying fluidized bed reactor treating effluent from a methanogenic reactor. Both nitrate and ammonium consumption increased with concomitant gas production. A maximum ammonium removal rate of 0.4 kg N · m−3 · d−1 (1.2 mM/h) was observed. The evidence for this anaerobic ammonium oxidation was based on nitrogen and redox balances in continuous-flow experiments. It was shown that for the oxidation of 5 mol ammonium, 3 mol nitrate were required, resulting in the formation of 4 mol dinitrogen gas. Subsequent batch experiments confirmed that the NH4+ conversion was nitrate dependent. It was concluded that anaerobic ammonium oxidation is a new process in which ammonium is oxidized with nitrate serving as the electron acceptor under anaerobic conditions, producing dinitrogen gas. This biological process has been given the name ‘Anammox” (anaerobic ammonium oxidation), and has been patented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号