首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

2.
W Gibb  J C Lavoie  J F Roux 《Steroids》1978,32(3):365-372
A 3beta-hydroxysteroid dehydrogenase (3betaHSD) was demonstrated in term human fetal membranes (chorion and amnion) with both dehydroepiandrosterone (3beta-hydroxy-5-androsten-17-one) and pregnenolone (3beta-hydroxy-5-pregnen-20-one as substrates, and the subcellular distribution substrate and nucleotide specificity of the enzyme was studied. In both membranes the microsomal fraction (particles which sedimented at 105,000 g after 90 min) had the highest specific activity. The chorion was more active than the amnion but the enzyme in both tissues had similar substrate and nucleotide specificity. NAD was the preferred cofactor, and pregnenolone was a better substrate than dehydroepiandrosterone in the presence of NAD. However, with NADP as cofactor both steroids were equally good substrates. When the 3beta-hydroxysteroid dehydrogenase activity of chorion microsomes was compared with that of placental microsomes, the specific activities were found to be of the same order of magnitude, and the substrate, nucleotide specificity and steroid binding properties were almost identical.  相似文献   

3.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

4.
G Pouskouleli  I S Butler 《Steroids》1984,44(2):123-136
The reactions of 3 beta-hydroxy-20-oxo-5-pregnene-16 alpha-carbonitrile, 3 beta-hydroxy-5-androsten-17-one, 3 beta-hydroxy-5-pregnen-20-one, and 5-cholesten-3 beta-ol with thioacetic acid in dioxane afford mainly 6 beta-acetylthio derivatives which were characterized by IR, NMR (1H, 13C), and mass spectroscopy. A similar reaction of 17 beta-hydroxy-1,4-androstadien-3-one yields chiefly the known 1 alpha-SCOCH3 derivative.  相似文献   

5.
When androstenedione was incubated with testicular microsomes of Sprague-Dawley rats in the presence of reduced nicotinamide-adenine dinucleotide (NADH), unknown metabolites were produced, in addition to testosterone and 7 alpha-hydroxyandrostenedione. The metabolites were identified as 3 beta-hydroxy-4-androsten-17-one and 3 beta-hydroxy-5-androsten-17-one (3:1) by biochemical and radiochemical methods. These results confirmed the occurrence of the reverse reactions from androstenedione to 3 beta-hydroxy-4-androsten-17-one and 3 beta-hydroxy-5-androsten-17-one catalyzed by the 3 beta-hydroxysteroid dehydrogenase and 5-ene-4-ene isomerase in the microsomal fraction of Sprague-Dawley rat testes.  相似文献   

6.
A radioimmunoassay for plasma 3 beta, 7 alpha-dihydroxy-5-androsten-17-one (7 alpha-hydroxy DHA) has been developed using anti-sera raised against 3 beta, 7 alpha-dihydroxy-5-androstene-17 beta-carboxyl-bovine serum albumin conjugate and [1, 2 (n) - 3H] 7 alpha-hydroxy DHA as the radioligand. Significant cross reactivity was found with 3 beta, 7 alpha-dihydroxy-5-pregnen-20-one (44%), 3 beta, 7 beta-dihydroxy-5-androsten-17-one (6%), 3 beta, 6 beta-dihydroxy-4-androsten-17-one (2.5%), 3 beta-hydroxy-5-androsten-17-one (DHA, 2%), 3 beta, 7 beta-dihydroxy-5-pregnen-20-one (2%) and 7 alpha-hydroxy-4-androstene-3, 20-dione (1%). 7 alpha-Hydroxy DHA was extracted from plasma and separated from cross-reacting factors using alumina micro-columns. The separation of bound and free steroid was achieved using dextran-coated charcoal. The concentration of 7 alpha-hydroxy DHA in the plasma of breast cancer patients was significantly lower than the concentrations in the plasma of normal women, hospitalized women suffering from non-endocrine diseases and patients with benign breast disease. The decrease in the concentration of 7 alpha-hydroxy DHA in the plasma of pregnant women was not significant.  相似文献   

7.
Pregnenolone (3β-hydroxy-5-pregnen-20-one) and DHA (3β-hydroxy-5-androsten-17-one), substrates for 3β-hy-droxysteroid dehydrogenase (3β-HSD), with KM values of 15–40 nM, were ineffective inhibitors of 5-ene-3-ketosteroid isomerase (isomerase), with KI values >40 μM in each case. Progesterone and androstenedione (4-androstene-3, 17-dione), 3β-HSD inhibitors with KI values of 5.0 μM and 0.8 μM respectively, were also relatively ineffective inhibitors of isomerase, with KI values of 30 μM and 16.5 μM respectively. Exposure of microsomes to hydrogen peroxide, which significantly increases the KM for pregnenolone as a 3β-HSD substrate, had no effect on the KM for the isomerase substrate 5-pregnene-3, 20-dione.It is concluded that the data do not support the common site concept with regard to the conversion of pregnenolone to progesterone by human placental microsomes.  相似文献   

8.
W Gibb  D D Hagerman 《Steroids》1976,28(1):31-41
The 3beta-hydroxysteroid dehydrogenase activity in whole bovine ovaries was systematically studied using dehydroepiandrosterone (3beta-hydroxy-5-androsten-17-one) and pregnenolone (3 beta-hydroxy-5-pregnen-20-one) as substrates, in order to determine whether, in this tissue, the same or different 3beta-hydroxysteroid dehydrogenases metabolize these steroids. The majority of the activity, with both substrates was found in the microsomes. Detergent extraction of the microsomes indicated that more than one enzyme was present in this fraction. A number of experiments on the Triton X-100 extract of the microsomes (the stability of the activity, its nucleotide specificity and kinetic analyses) were most simply explained by a single enzyme metabolizing both steroids. However, the stereospecificity of hydride-ion transfer from pregnenolone to NAD+ (B transfer) was different than that from dehydroepiandrosterone to NAD+ (A and B transfer). Thus, as no single enzyme is known to catalyze the transfer of hydride-ion to both sides of NAD+, it is proposed that there are at least two 3beta-hydroxysteroid dehydrogenases in the Triton X-100 extract.  相似文献   

9.
In embryos of many reptiles, the sexual differentiation of gonads is temperature-dependent. In the turtle Emys orbicularis, all individuals become phenotypic males at 25 degrees C, whereas 100% phenotypic females are obtained at 30 degrees C. Steroid metabolism in embryonic gonads was studied at both temperatures, during and after the thermosensitive period for sexual differentiation. Pools of gonads were incubated for various times, with 3 beta-hydroxy-5-pregnen-20-one (pregnenolone), progesterone, dehydroepiandrosterone or 4-androstene-3,17- dione as substrates. The analysis of metabolites combined two successive chromatographies (HPLC and TLC) and autoradiography. Conversion of pregnenolone to progesterone and of dehydroepiandrosterone to 4-androstene-3,17-dione was more important in testes at 25 degrees C than in ovaries at 30 degrees C. In ovaries, a large amount of 5-pregnene- 3 beta,20 beta-diol was formed from pregnenolone, and 5-androstene-3 beta,17 beta-diol was produced from dehydroepiandrosterone. In both testes and ovaries, 5 alpha-pregnane and 5 alpha-androstane derivatives were the main metabolites obtained from progesterone and 4-androstene-3,17-dione, respectively. Progesterone was also converted to 20 beta-hydroxy-4-pregnen-3-one. Dehydroepiandrosterone and 4-androstene-3,17-dione were also metabolized into 11 beta-hydroxy-4-androstene-3,17-dione (only in testes), testosterone, 11 beta,17 beta-dihydroxy-4-androstene-3-one, 17 beta-hydroxy-4-androstene-3,11-dione (low amounts in testes, traces in ovaries), 17 alpha-hydroxy-4-androstene-3-one, estrone and estradiol-17 beta (traces).  相似文献   

10.
A gas chromatographic-mass spectrometric (GC-MS) method for analysis of unconjugated steroids in a rat testis is described. A combined solvent-solid extraction procedure, utilizing Lipidex 1000 and Sep-Pak C18, gives a 25-fold purified extract. Steroids in this extract are fractionated by straight phase high-performance liquid chromatography (HPLC) on a LiChrosorb DIOL column in n-hexane-2-propanol, 92:8 (v/v). Four fractions are collected and the steroids are converted to tert-butyldimethylsilyl (TBDMS), 3-enol-TBDMS, and mixed TBDMS-trimethylsilyl (TMS) derivatives using TBDMS- and TMS-imidazole with sodium formate as catalyst under conditions suitable for the steroids present in the respective fractions. The derivatives are purified by reversed phase HPLC in 100% methanol and are analyzed by GC-MS, using selected ion monitoring of the major ions of high mass. For quantification, a mixture of known amounts of ten 14C-labelled steroids, [3H]estradiol and [2H3]estradiol are added to the testis homogenate. The mean concentrations (ng/g wet wt) of the twelve steroids determined were: 4-androstene-3, 17-dione, 4.0; testosterone, 127; 17 beta-hydroxy-5 alpha-androstan-3-one, 4.5; 5 alpha-androstane-3 alpha, 17 beta-diol, 5.7; 5 alpha-androstane-3 beta, 17 beta-diol, 1.5; progesterone, 5.5; 17 alpha-hydroxyprogesterone, 14.4; 3 beta-hydroxy-5-androsten-17-one, 0.07; 5-androstene-3 beta, 17 beta-diol, 0.25; 3 beta-hydroxy-5-pregnen-20-one, 10.3; 3 beta, 17 beta-dihydroxy-5-pregnen-20-one, 0.95; and estradiol, 0.025. Variations between animals were large whereas testes from the same animal in most cases had similar steroid concentrations.  相似文献   

11.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

12.
A method for the convenient synthesis of the recently isolated allylic gonadal steroids, 3 alpha-hydroxy-4-pregnen-20-one (3 alpha-dihydroprogesterone; 3 alpha-DHP) and 3 alpha-hydroxy-4-androsten-17-one (3 alpha-HA), was developed using 4-pregnene-3,20-dione (progesterone) and 4-androstene-3,17-dione as substrates and potassium trisiamylborohydride (KS-Selectride) as reducing agent. Similar reactions were also used for the reduction of 5 alpha-pregnane-3,20-dione to 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha-HP). The yields were about 15%, 50%, and greater than 90% for 3 alpha-DHP, 3 alpha-HA and 3 alpha-HP, respectively. Structures of the products, including the 3 beta-isomers and the 17 alpha-epimer, formed in these reactions were determined by NMR and mass spectroscopic methods.  相似文献   

13.
The following steroids have been identified by combined gas chromatography-mass spectrometry in a urine specimen collected from a newborn chimpanzee; 5-androstene-3β, 17α-diol, 3β,16α (and 16β)-dihydroxy-5-androsten-17-one, 5-androstene-3β, 16α, 17β-triol, 5-androstene-3β, 16β, 17α-triol, 5-pregnene-3β, 20α-diol, 5-pregnene-3β, 20α, 21-triol, 3β,21-dihydroxy-5-pregnen-20-one, 3β, 16α-dihydroxy-5-pregnen-20-one, 5-Piegnene-3β, 16α,20α, 21-tetrol, 5-pregnene-3β,17α, 20ξ, 21-tetrol androstenetriolones and androstenetetrols.  相似文献   

14.
As a result of studies of guinea-pig live testosterone 17beta-dehydrogenase (NADP+) (EC 1.1.1.64), a new testosterone 17beta-dehydrogenase was discovered. The new enzyme was purified to a single homogeneous protein from the 105 000 g-supernatant fraction of guinea-pig liver by (NH4)2SO4 fractional precipitation and two gel-filtration stages, DEAE-cellulose column chromatography and hydroxyapatite column chromatography. It was characterized by many properties. The enzyme has almost the same properties as the classical testosterone 17beta-dehydrogenase (NADP+) (EC 1.1.1.64), with respect to cofactor requirement, pH optima for dehydrogenation, effect of phosphate ion on the NAD+-dependent reaction and molecular weight, but characteristic differences were observed in substrate-specificity between the two dehydrogenases. With various androstane derivatives, the configuration of the A/B-ring junction was closely connected with enzyme activity. 5alpha-Androstanes, such as 5alpha-androstane-3alpha,17beta-diol, 5alpha-androstane-3beta,17beta-diol and 17beta-hydroxy-5alpha-androstan-3-one, and 5beta-congeners, such as 5beta-androstane-3alpha,17beta-diol, 5beta-androstane-3beta,17beta-diol and 17beta-hydroxy-5beta-androstan-3-one, served as substrates for both the EC 1.1.1.64 enzyme and the new enzyme. The EC 1.1.1.64 enzyme oxidized testosterone more rapidly than did the new enzyme. These comparisons were based on the relative activities, apparent Km values and apparent Vmax values.  相似文献   

15.
3-Deoxy steroids having a 4-ene system were found to be competitive inhibitors of human placental aromatase. 19-Hydroxy-4-androsten-17-one (2) potently inhibits the enzyme with an apparent Ki of 12.5 nM, but does not produce a time-dependent inactivation of the enzyme.  相似文献   

16.
J E van Lier  G Kan  R Langlois 《Steroids》1973,21(4):521-536
The isolation of 20α-hydroperoxy-5-pregnen-3β-ol and its 20β-isomer from air aged cholesterol is described. The structures of these new steroids are deducted from their physicochemical properties and confirmed by borohydride reduction to the known epimeric 5-pregnene-3β, 20-diols. Formation of the 20α-hydroperoxy-5-pregnen-3β-ol during the autoxidation process is suggested to result from the interaction of molecular oxygen with a 3β-hydroxy-5-pregnen-20α-yl radical, a specie which may be formed upon decomposition of the 25-hydroperoxy-5-cholesten-3β-ol. Formation of the 20β-hydroperoxy-epimer is shown to result partially from isomerization of the 20α-hydroperoxy-5-pregnen-3β-ol. Thermal decomposition of both isomers gives pregnenolone (3β-hydroxy-5-pregnen-20-one) as the major product together with the corresponding 5-pregnene-3β, 20-diol, 5-androsten-3β-ol and a small amount of 5-androstene-3β, 17β-diol and 5, 16-androstadien-3β-ol. Incubation of either hydroperoxide with adrenocortex microsomal and mitochondrial preparations gave pregnenolone and the corresponding steroid alcohol as the sole products. These results are discussed in comparison with the earlier reported studies on the 20α-hydroperoxy-5-cholesten-3β-ol and in terms of the possible role of steroid hydroperoxides as transit species in the biogenesis of steroid hormones.  相似文献   

17.
Liu HM  Ge W  Li H  Wu J 《Steroids》2007,72(6-7):509-513
Fermentation of 5alpha,6alpha-epoxy-3beta-hydroxy-16-pregnen-20-one (4) with Trichoderma viride under aerobic condition yielded 3beta,5alpha,6beta-trihydroxy-16-pregnen-20-one (5) and 3beta,5alpha,6beta,15beta-tetrahydroxy-16-pregnen-20-one (6). Each microbial metabolite was characterized by spectroscopic methods. Compounds 6 and 3beta,5alpha,15beta-trihydroxy-16-pregnen-6,20-dione (7) are reported for the first time.  相似文献   

18.
Excised cornea from adult New Zealand rabbits were incubated with progesterone-4-14C in Eagle's media for 96 hr. Samples were inactivated at intervals of 24 hr incubation periods. The following metabolites of progesterone were isolated: 20 alpha-Hydroxy-4-pregnen-3-one, 20-hydroxy-4-pregnen-3-one, 5 alpha-pregnane-3,20-dione; 5 beta-pregnane-3,20-dione and 6 beta-hydroxy-4-pregnen-3,20-dione. 20 alpha-Hydroxy-pregnen-3-one was the predominant metabolite of progesterone-4-14C. A linear increase was observed throughout 96 hr. The opposite was found for 5 alpha and 5 beta pregnane-3,20-dione. Compounds remaining at the origin of the paper chromatograms contained 6 beta-hydroxy-4-pregnen-3,20-dione and other still unidentified metabolites of progesterone-4-14C. Presence of 20 alpha and 20 beta-reductase; 5 alpha and 5 beta-reductase and 6 beta-hydroxylase enzyme systems are involved in corneal progesterone metabolism. No fungal neither bacterial enzymatic biotransformation occurred in the culture media.  相似文献   

19.
The in vitro metabolism of [3H] testosterone (17beta-hydroxy-4-androsten-3-one), [3H] androstenedione (4-androstene-3,17-dione) and [3H] dehydroepiandrosterone (3beta-hydroxy-5-androsten-17-one) by cauda epididymal spermatozoa from the rat, rabbit, hamster, guinea-pig and ram, varied between species. There were differences in the androgens utilized, the extent of their conversion and the identities of the metabolites formed. Of the steroid substrates tested rat spermatozoa metabolized testosterone preferentially while spermatozoa from guinea-pig transformed [3H] dehydroepiandrosterone (DHEA) almost exclusively. Rabbit spermatozoa converted all three [3H] androgens while hamster sperm utilized [3H] testosterone and [3H] DHEA. Spermatozoa collected from rams killed at the abattoir metabolized both [3H] androstenedione and [3H] DHEA but this capacity was dramatically reduced in spermatozoa collected from rams subjected to short-term anaesthesea. The results are discussed in relation to the possible direct roles of androgens in sperm physiology.  相似文献   

20.
Three fluorescence-labelled derivatives of testosterone were prepared consisting of the steroid separated from the fluorochrome by a hydrocarbon "bridge". "Bridges" of different lengths (C2 to C7) were used as the length required to avoid steric hindrance effects by the fluorochrome in studies on steroid-protein binding was unknown. The three derivatives prepared were: 17 beta-hydroxy--4-androsten-3-one 3-(O-(N-(2'-mercapto)ethyl)carbamoylmethyl)oxime, 17 beta-hydroxy-4-androsten-3-one 3-(O-(N-(3'-amino)propyl)carbamoylmethyl)oxime and 17 beta-hydroxy-4-androsten-3-one 3-(O(N-(7'-amino)heptyl)carbamoylmethyl)oxime. These were then coupled with either a dansyl or a fluorescein molecule. Overall yields were sufficient and the products immunoreactive with anti-testosterone antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号