首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Recombinant Saccharomyces cerevisiae strains harbouring different levels of xylulokinase (XK) activity and effects of XK activity on utilization of xylulose were studied in batch and fed-batch cultures. METHODS AND RESULTS: The cloned xylulokinase gene (XKS1) from S. cerevisiae was expressed under the control of the glyceraldehyde 3-phosphate dehydrogenase promoter and terminator. Specific xylulose consumption rate was enhanced by the increased specific XK activity, resulting from the introduction of the XKS1 into S. cerevisiae. In batch and fed-batch cultivations, the recombinant strains resulted in twofold higher ethanol concentration and 5.3- to six-fold improvement in the ethanol production rate compared with the host strain S. cerevisiae. CONCLUSIONS: An effective conversion of xylulose to xylulose 5-phosphate catalysed by XK in S. cerevisiae was considered to be essential for the development of an efficient and accelerated ethanol fermentation process from xylulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Overexpression of the XKS1 gene made xylulose fermentation process accelerated to produce ethanol through the pentose phosphate pathway.  相似文献   

2.
3.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h(-1) g (dry weight) of cells(-1) (0.24 to 0.30 g h(-1) g [dry weight] of cells(-1)) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h(-1). The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h(-1) g (dry weight) of cells(-1) when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h(-1) g (dry weight) of cells(-1) when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

4.
The influence of cell recycling of xylose-fermenting Saccharomyces cerevisiae TMB3001 was investigated during continuous cultivation on a xylose-glucose mixture. By using cell recycling at the dilution rate ( D) of 0.05 h(-1), the cell-mass concentration could be increased from 2.2 g l(-1) to 22 g l(-1). Consequently, the volumetric ethanol productivity increased ten-fold, from 0.5 g l(-1) h(-1) to 5.35 g l(-1) h(-1). By increasing the biomass concentration, the xylose consumption rate increased from 0.75 g xylose l(-1) h(-1) without recycling to 1.9 g l(-1) h(-1) with recycling. The specific ethanol productivity was in the range of 0.23-0.26 g g(-1) h(-1) with or without cell recycling, showing that an increased cell-mass concentration did not influence the efficiency of the yeast.  相似文献   

5.
To improve the ability of recombinant Saccharomyces cerevisiae strains to utilize the hemicellulose components of lignocellulosic feedstocks, the efficiency of xylose conversion to ethanol needs to be increased. In the present study, xylose-fermenting, haploid, yeast cells of the opposite mating type were hybridized to produce a diploid strain harboring two sets of xylose-assimilating genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase. The hybrid strain MN8140XX showed a 1.3- and 1.9-fold improvement in ethanol production compared to its parent strains MT8-1X405 and NBRC1440X, respectively. The rate of xylose consumption and ethanol production was also improved by the hybridization. This study revealed that the resulting improvements in fermentation ability arose due to chromosome doubling as well as the increase in the copy number of xylose assimilation genes. Moreover, compared to the parent strain, the MN8140XX strain exhibited higher ethanol production under elevated temperatures (38 °C) and acidic conditions (pH 3.8). Thus, the simple hybridization technique facilitated an increase in the xylose fermentation activity.  相似文献   

6.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

7.
D-Xylulokinase (XK) is essential for the metabolism of D-xylose in yeasts. However, overexpression of genes for XK, such as the Pichia stipitis XYL3 gene and the Saccharomyces cerevisiae XKS gene, can inhibit growth of S. cerevisiae on xylose. We varied the copy number and promoter strength of XYL3 or XKS1 to see how XK activity can affect xylose metabolism in S. cerevisiae. The S. cerevisiae genetic background included single integrated copies of P. stipitis XYL1 and XYL2 driven by the S. cerevisiae TDH1 promoter. Multicopy and single-copy constructs with either XYL3 or XKS1, likewise under control of the TDH1 promoter, or with the native P. stipitis promoter were introduced into the recombinant S. cerevisiae. In vitro enzymatic activity of XK increased with copy number and promoter strength. Overexpression of XYL3 and XKS1 inhibited growth on xylose but did not affect growth on glucose even though XK activities were three times higher in glucose-grown cells. Growth inhibition increased and ethanol yields from xylose decreased with increasing XK activity. Uncontrolled XK expression in recombinant S. cerevisiae is inhibitory in a manner analogous to the substrate-accelerated cell death observed with an S. cerevisiae tps1 mutant during glucose metabolism. To bypass this effect, we transformed cells with a tunable expression vector containing XYL3 under the control of its native promoter into the FPL-YS1020 strain and screened the transformants for growth on, and ethanol production from, xylose. The selected transformant had approximately four copies of XYL3 per haploid genome and had moderate XK activity. It converted xylose into ethanol efficiently.  相似文献   

8.
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD?-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l?1 h?1 xylose consumption rate, 0.25 g l?1 h?1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only.  相似文献   

9.
[目的]以不同强度的启动子控制表达木酮糖激酶基因,并研究其引起的不同木酮糖激酶活性水平对木糖利用酿酒酵母(Saccharomyces cerevisiae)代谢流向的影响.[方法]以酿酒酵母CEN.PK 113-5D为出发菌株,选择酿酒酵母内源启动子TEF1p,PGK1p和HXK2p,利用Cre-loxP无标记同源重组系统,置换染色体上木酮糖激酶基因XKS1的启动子(XKS1p)序列;并通过附加体质粒引入木糖代谢上游途径,构建不同水平表达木酮糖激酶的木糖利用工程菌株;从木酮糖激酶的转录水平、酶活水平、胞内的ATP浓度及木糖代谢等性状,对各菌株进行评价.[结果]转录及酶活测定结果显示,与天然状态相比,所选择的启动子对木酮糖激酶均表现出更强的启动效率.菌株体内表达木酮糖激酶活性水平由高至低的顺序为其基因XKS1在启动子PGK1p、TEF1p、HXK2p和XKS1p控制下.随着木酮糖激酶的活性的提高,胞内的ATP水平下降,而转化木糖生成乙醇的能力上升.最高乙醇产率为0.35g/g消耗的总糖,此时副产物木糖醇产率最低,为0.18g/g消耗的木糖.[结论]通过在染色体上置换启动子,提高了木酮糖激酶的表达水平.在一定范围内,木酮糖激酶的高活性有利于木糖向乙醇的转化.  相似文献   

10.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。  相似文献   

11.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

12.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of a glucose/xylose mixture was carried out by Saccharomyces cerevisiae in the presence of xylose isomerase. The SIF of 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 7.5 g l−1 and 0.36 g (g xylose consumed)−1. These parameters improved to 13.4 g l−1 and 0.40 respectively, when borate was added to the medium. The SICF of a mixture of 50 g l−1 glucose and 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 29.8 g l−1 and 0.42 respectively, in the presence of borate. Temperature modulation from 30 °C to 35 °C during fermentation further enhanced the above parameters to 39 g l−1 and 0.45 respectively. The approach was extended to the bioconversion of sugars present in a real lignocellulose hydrolysate (peanut-shell hydrolysate) to ethanol, with a fairly good yield. Received: 14 May 1999 / Received revision: 27 September 1999 / Accepted: 2 October 1999  相似文献   

13.
The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD(+))-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP(+))-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1?% yeast extract, 2?% peptone, and 2?% xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32?g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99?g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.  相似文献   

14.
Saccharomyces cerevisiae lacks the ability to ferment the pentose sugar xylose that is the second most abundant sugar in nature. Therefore two different xylose catabolic pathways have been heterologously expressed in S. cerevisiae. Whereas the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway leads to the production of the by-product xylitol, the xylose isomerase (XI) pathway results in significantly lower xylose consumption. In this study, kinetic models including the reactions ranging from xylose transport into the cell to the phosphorylation of xylulose to xylulose 5-P were constructed. They were used as prediction tools for the identification of putative targets for the improvement of xylose utilization in S. cerevisiae strains engineered for higher level of the non-oxidative pentose phosphate pathway (PPP) enzymes, higher xylulokinase and inactivated GRE3 gene encoding an endogenous NADPH-dependent aldose reductase. For both pathways, the in silico analyses identified a need for even higher xylulokinase (XK) activity. In a XR-XDH strain expressing an integrated copy of the Escherichia coli XK encoding gene xylB about a six-fold reduction of xylitol formation was confirmed under anaerobic conditions. Similarly overexpression of the xylB gene in a XI strain increased the aerobic growth rate on xylose by 21%. In contrast to the in silico predictions, the aerobic growth also increased 24% when the xylose transporter gene GXF1 from Candida intermedia was overexpressed together with xylB in the XI strain. Under anaerobic conditions, the XI strains overexpressing xylB gene and the combination of xylB and GFX1 genes consumed 27% and 37% more xylose than the control strain.  相似文献   

15.
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After 72 h, F106X produced less ethanol than xylitol, while F106KR produced ethanol at a constant yield of 0.36 g/g for all xylose concentrations. The xylose consumption rate and ethanol productivity increased with increasing xylose concentrations in F106KR strain. In particular, F106KR produced 77.6g/L ethanol from 220 g/L xylose and converted 100 g/L glucose and 100g/L xylose into 89.0 g/L ethanol in 72h, but the corresponding values of F106X strain are 7.5 and 65.8 g/L. The ethanol yield of F106KR from glucose and xylose was 0.42 g/g, which was 82.3% of the theoretical yield. These results suggest that the F106KR strain is an excellent producer of ethanol from xylose.  相似文献   

16.
以树干毕赤酵母和酿酒酵母为发酵菌株,酸性蒸汽爆破玉米秸秆预水解液和纯糖模拟液为C源,采用固定化酵母细胞的方法,研究了酸爆玉米秸秆预水解液初始pH、N源种类及其浓度、3种发酵模式对树干毕赤酵母戊糖发酵的影响。结果表明:玉米秸秆预水解液适合发酵的初始pH范围为6.0~7.0;1.0 g/L的(NH4)2SO4作为N源,在40 g/L葡萄糖和25 g/L木糖培养基中发酵24 h,糖利用率达到99.47%,乙醇质量浓度为24.72 g/L,优于尿素和蛋白胨作为N源;3种模式的发酵体系中,以游离树干毕赤酵母和固定化酿酒酵母发酵性能最好,糖利用率和乙醇得率分别为99.43%和96.39%。  相似文献   

17.
Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess.  相似文献   

18.
Saccharomyces cerevisiae ferments hexoses efficiently but is unable to ferment xylose. When the bacterial enzyme xylose isomerase (XI) from Thermus thermophilus was produced in S. cerevisiae, xylose utilization and ethanol formation were demonstrated. In addition, xylitol and acetate were formed. An unspecific aldose reductase (AR) capable of reducing xylose to xylitol has been identified in S. cerevisiae. The GRE3 gene, encoding the AR enzyme, was deleted in S. cerevisiae CEN.PK2-1C, yielding YUSM1009a. XI from T. thermophilus was produced, and endogenous xylulokinase from S. cerevisiae was overproduced in S. cerevisiae CEN.PK2-1C and YUSM1009a. In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold. Deletion of the GRE3 gene combined with expression of the xylA gene from T. thermophilus on a replicative plasmid generated recombinant xylose utilizing S. cerevisiae strain TMB3102, which produced ethanol from xylose with a yield of 0.28 mmol of C from ethanol/mmol of C from xylose. None of the recombinant strains grew on xylose.  相似文献   

19.
We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells . h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.  相似文献   

20.
Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K(M) for NADPH was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号