首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and thecel (Tw 40) mutant ofNeurospora crassa. Thecel (Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at 34 °C) had approximately twice the saturated fatty acid content ofw/t organisms grown at 22 °C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived fromw/t andcel (Tw 40) occur at –31 and –11 °C, respectively. The heats of transition (H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol inNeurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. IntactNeurospora, whetherw/t orcel (Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 °C was observed in intact cells and extracted phospholipids of bothw/t andcel (Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (H1 cal/g), and was reversible.  相似文献   

2.
The effect of doubling the saturated fatty acid content on the electrophysiology of Neurospora crassa membranes was studied. Intracellular membrane input resistance (Rm) and potential (Em) were measured for wild-type (w/t) and cel- (Tween 40) organisms as a function of temperature. Over the 0 to 40 degrees C temperature range studied, mean Em values of both w/t and cel- (Tw 40) organisms increased from -160 to -210 mV. This difference is greater than that expected from Nernst potential considerations, indicating an active component of Em. This active component is insensitive to a doubling of the saturated fatty acid content. Rm exhibits a temperature dependence and hysteresis. Averaged data indicate an increase in Rm with decreased temperature. The slope of the temperature dependence varies among individual hyphae. Above 17.5 degrees C cel- (Tw 40) hyphae averaged greater than 70% higher values of Rm than w/t. Below 17.5 degrees C w/t Rm data divided into low and high temperature dependence groups, while cel- data exhibited a low temperature dependence. The results are discussed in relation to gel-liquid crystal phase transitions, membrane fluidity, and the contribution of fatty acid structure to membrane electrical properties.  相似文献   

3.
When zeaxanthin ([3R,3R']-beta, beta-carotene-3,3'diol) is inserted into phospholipid dispersions and the latter heated through their gel-liquid crystal phase transitions, large changes are noted in the resonance Raman and absorption spectra of the carotenoid molecule. By analogy with the data of Carey and co-workers (J. Raman Spectrosc. 6:282) who studied the aggregation of zeaxanthin in acetone-water solutions, it is suggested that the carotenoid aggregates in the phospholipid gel state while forming a monomer in liquid crystal phases. The alterations in both the visible absorption and resonance Raman data have been used to monitor phospholipid phase behavior in dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine, (DSPC) one-component systems and binary mixtures. The phase diagram obtained for the binary system, as constructed from visible absorption and resonance Raman data, is compared with that of Shimshick and McConnell (Biochemistry. 12:2351) obtained from electron spin resonance (ESR) studies. Although the agreement between absorption and ESR data is generally satisfactory, onset temperatures for phase separation at low DSPC mole fractions deduced from resonance Raman measurements are several degrees lower than those from the other methods. Nevertheless, the use of zeaxanthin as a resonance Raman and visible absorption probe behavior will be useful in some situations where ordinary Raman spectroscopic data cannot be obtained easily. The advantage of the resonance Raman approach is illustrated in a study of the phase behavior of a phospholipid extract of a cel- mutant of Neurospora crassa. A phase separation region is observed with onset and completion temperatures of -19 and -6 degrees C, respectively.  相似文献   

4.
Apoprotein B, the major apoprotein of normal human low density lipoprotein (LDL) was solubilized with sodium deoxycholate (NaDC). The protein was recombined with the phospholipid dimyristoyl phosphatidylcholine (DMPC) to produce a complex of DMPC-apoB (4:1 w/w). (Biochemistry. 22: 3170-3178. 1983). Carboxyfluorescein and [3H]dextran entrapment studies show the DMPC-apoB 4:1 (w/w) complex to encapsulate an aqueous volume of 0.17 microliter/mumol of DMPC. From the chemistry and morphology of the complex and the evidence that the complex possesses an encapsulated volume, the most appropriate structural model for this assembly is that of a phospholipid single bilayer vesicle into which apoB is incorporated. Differential scanning calorimetry (DSC) and circular dichroic spectroscopy (CD) were used to investigate the physical properties of apoB in the mixed micellar complex with NaDC and in the vesicular DMPC-apoB complex. CD studies of apoB in NaDC mixed micelles show that apoB exhibits a similar secondary structure as apoB of native LDL over the temperature range 5-30 degrees C. Reversible structural changes occur between 30 and 50 degrees C. However, above 50 degrees C, disruption of the micellar particle and endothermic protein unfolding and denaturation occur with a Tmax of 52 degrees C and an enthalpy of 0.22 cal/g apoB, as shown by DSC. The DMPC-apoB complex exhibits a reversible thermal transition centered at 24 degrees C (delta H = 3.34 Kcal/mol DMPC) which is associated with the order-disorder transition of the hydrocarbon chains of DMPC. An endothermic transition occurs over the range 53-70 degrees C (delta H = 2.09 cal/g apoB) which, as shown by CD and turbidity study, corresponds to protein unfolding-denaturation and particle disruption. CD shows that apoB in the vesicular environment undergoes a series of conformational changes. The major alterations occur over the temperature range of the order-disorder transition of the phospholipid. Between 37-60 degrees C, the conformation is similar to that observed in native LDL.  相似文献   

5.
Experiments were conducted on the effect of growth temperature on phospholipids of Neurospora. Strains grown at high (37 degrees C) and low (15 degrees C) temperatures show large differences in the proportions of phospholipid fatty acid alpha-linolenate (18 : 3) which can vary by 10-fold over this temperature range. Changes in the phospholipid base composition are less dramatic; the most significant is an increase in phosphatidylethanolamines at low temperatures accompanied by a concomitant decrease in phosphatidylcholine. It appears that phospholipid fatty acid desaturation is closely regulated with respect to growth temperature. Over the 37 to 15 degrees C growth temperature range there appear to be at least two desaturase systems in Neurospora which are under different controls. Production of 18 : 1 and 18 : 2 species appears to occur at high levels over the entire temperature range, whereas the production of 18 : 3 seems to be inversely related to growth temperature. Shifting 37 degrees C-acclimated cultures to 15 degrees C produces a growth lag period of approximately 3 h, during which the level of 18 : 3 increases markedly. Differential scanning calorimetry of phospholipids from 37 degrees C cells shows a phase transition at -22 degrees C while lipids from 15 degrees C cultures exhibit a phase transition with reduced enthalpy at about -41 degrees C. The data are consistent with the idea that phospholipid composition in Neurospora is under strict control and suggest that membrane fluidity is regulated with respect to growth temperature through changes in membrane lipid composition.  相似文献   

6.
Summary The effect of doubling the saturated fatty acid content on the electrophysiology ofNeurospora crassa membranes was studied. Intracellular membrane input resistance (R m ) and potential (E m ) were measured for wild-type (w/t) andcel (Tween 40) organisms as a function of temperature. Over the 0 to 40°C temperature range studied, meanE m values of bothw/t andcel (Tw 40) organisms increased from –160 to –210 mV. This difference is greater than that expected from Nernst potential considerations, indicating an active component ofE m . This active component is insensitive to a doubling of the saturated fatty acid content.R m exhibits a temperature dependence and hysteresis. Averaged data indicate an increase inR m with decreased temperature. The slope of the temperature dependence varies among individual hyphae. Above 17.5°Ccel (Tw 40) hyphae averaged greater than 70% higher values ofR m thanw/t. Below 17.5°Cw/t R m data divided into low and high temperature dependence groups, whilecel data exhibited a low temperature dependence. The results are discussed in relation to gel-liquid crystal phase transitions, membrane fluidity, and the contribution of fatty acid structure to membrane electrical properties.  相似文献   

7.
Experiments were conducted to examine the effects of temperature acclimation on sterol and phospholipid biosynthesis in Neurospora crassa. Cultures grown at high (37 degrees C) and low (15 degrees C) temperatures show significant differences in free and total sterol content, sterol/phospholipid ratios and distribution of major phospholipid species in total lipids and two functionally distinct membrane fractions. The ratio of free sterols to phospholipids in total cellular lipids from 15 degrees C cultures was found to be about one-half that found at 37 degrees C, whereas sterol/phospholipid ratios of mitochondrial and microsomal membranes were found to be higher at the low growth temperature. Total sterol and phospholipid biosynthetic rates showed parallel reductions in cultures acclimating to a shift from 37 to 15 degrees C growth conditions. Distribution of [14C]acetate label into free sterols was significantly lower under these conditions, however; indicating an increase in the conversion rate of sterols to sterol esters at the lower temperature. Mitochondrial and microsomal membrane fractions showed distinct phospholipid distributions which also differed from total lipid distributions at the two growth temperatures. In each case there was a consistent decrease in phosphatidylcholine and a corresponding increase in phosphatidylethanolamine as growth temperatures were lowered.  相似文献   

8.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

9.
Bacillus stearothermophilus was grown at the optimal temperature range (center, 65 degrees C), below it (48 and 55 degrees C), and above it (68 degrees C), in a complex medium with or without 2.5 mM Ca2+. The Ca(2+)-supplement improves growth at sub- and supraoptimal temperatures and extends it to higher temperatures (Jurado et al. (1987) J. Gen. Microbiol. 133, 507-513). The phospholipid composition of cultures obtained in the different growth conditions was studied. Phosphatidylethanolamine was always the major phospholipid (40 to 50% of the total phospholipid). Diphosphatidylglycerol, phosphatidylglycerol, a phosphoglycolipid (pgl) and two minor phospholipids (not identified) were also found in the polar lipid extract. The pgl shows a threefold concentration increase as the growth temperature raises from 48 to 68 degrees C. The thermotropic behavior of membrane lipids was studied by differential scanning calorimetry (DSC) and by means of two fluorescent probes of fluidity, 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(2-pyrenyl)propane (2Py(3)2Py). The results reveal similar features and clearly show a shift of the temperature range of the phase transition to higher values and an increased structural order of the bilayer, as the growth temperature rises from 55 to 68 degrees C, but an opposite effect was observed from 48 to 55 degrees C. Although the Ca(2+)-supplement to the growth medium has no detectable effect, the addition of Ca2+ to the buffer of liposomes (Ca(2+)-liposomes) has a significant ordering effect at all growth temperatures. These liposomes show a shift of the transition range to higher temperatures and the fluorescent parameters (DPH polarization and intramolecular excimerization of the 2Py(3)2Py) detected an order increase of the probes environment, along and above the main phase transition. Spectra of 31P-NMR and polarized light microscopy clearly show that the lipid extracts exhibit, in all the conditions, typical lamellar phase geometry. We concluded that B. stearothermophilus controls the membrane lipid composition to compensate for the destabilizing effect of high temperatures on the membrane organization or to provide an appropriate packing of phospholipid molecules in a stable bilayer. At high temperatures, Ca(2+)-stimulatory effect on growth is presumably due to a direct Ca2+ interaction with the membrane phospholipids, inducing an increased structural order on the bilayer. The increase of the phase transition temperature in the total lipid extracts as compared with the respective polar lipid fractions probably indicates a stabilizing effect of neutral lipids on membrane bilayers.  相似文献   

10.
Lipid composition, physical state of major phospholipid classes and transbilayer migration of phosphatidylcholine have been determined in plasma membranes of the dog kidney. The lipid composition of brush-border membranes markedly differs from that of antiluminal membranes with respect to: (a) the total phospholipid content; (b) the cholesterol to phospholipid ratio (C/P); (c) the distribution of the major phospholipid classes. Sphingomyelin present in large amounts in both luminal and antiluminal membranes extracts exhibits a transition of phase between 20 and 44 degrees C approximately. In the range of temperature studied (5-55 degrees C) no phase transitions were detected for the other phospholipid species. Our data suggest that: (1) at physiological temperature the higher C/P ratio of brush-border membranes is in large part responsible for their lower fluidity; (2) both the relatively low cholesterol and high sphingomyelin contents contribute to the thermotropic transitions observed in intact membranes. Finally transbilayer migration of phosphatidylcholine in brush-border membranes is a very slow process with a half time of 6.5 h at 37 degrees C which compares with that of other biological membranes.  相似文献   

11.
Energetics of DNA twisting. II. Topoisomer analysis   总被引:28,自引:0,他引:28  
A gel electrophoresis method has been developed for resolving small (approximately equal to 250 bp DNA topoisomers. In this size range only one major topoisomer band is observed, except for ligase closure conditions in which the probabilities are nearly equal for circularization by untwisting and overtwisting the corresponding linear DNA. The two probabilities are nearly equal when delta Tw is close to 0.5, if the mean helical twist of the linear DNA is n + delta Tw, where n is an integer and delta Tw is the fractional twist. We determine delta Tw of the linear DNA in standard conditions (20 degrees C, no ethidium) by titration experiments in which delta Tw is varied at the time of ligase closure, either by changing temperature or ethidium concentration. The endpoint (delta Tw = 0.5) is found when the two topoisomers formed by untwisting and overtwisting are present at equal concentrations. This analysis assumes that the net writhe is zero and the DNA helix is isotropically bendable. The results confirm the analysis of cyclization probabilities given in the preceding paper: delta Tw = 0 at the two maxima in the curve of j-factor versus DNA length and delta Tw = 0.5 at the minimum. Consequently, we can determine the DNA lengths at which Tw takes on integral values and use them to measure precisely the average helix repeat. From the difference between the delta Tw values of DNAs with 237 and 247 bp, we obtain an approximate value for the helix repeat of h = 10.4 +/- 0.1 bp/turn, in good agreement with earlier values found by the band-shift and nuclease-cutting methods. The twist is integral at 250.8 +/- 0.4 bp and from h = 10.4 +/- 0.1 we find n = 24; then 250.8/24 gives h = 10.45 +/- 0.02 bp/turn. The mean linking number (Lk) changes in a stepwise manner as delta Tw is varied for 250 bp DNAs. This result is expected when the free energy of twisting half a turn becomes large compared to thermal fluctuations. In these experiments, it is possible to obtain the mean Tw value from the mean Lk value only when delta Tw = 0.5, and consequently the mean Lk value is not simply related to DNA length for 250 bp DNAs except when delta Tw = 0.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A Blume  J Tuchtenhagen 《Biochemistry》1992,31(19):4636-4642
The heat of dissociation of the second proton of 1,2-dimyristoylphosphatidic acid (DMPA) was studied as a function of temperature using titration calorimetry. The dissociation of the second proton of DMPA was induced by addition of NaOH. From the calorimetric titration experiment, the intrinsic pK0 for the dissociation reaction could be determined by applying the Gouy-Chapman theory. pK0 decreases with temperature from ca. 6.2 at 11 degrees C to 5.4 at 54 degrees C. From the total heat of reaction, the dissociation enthalpy, delta Hdiss, was determined by subtracting the heat of neutralization of water and the heat of dilution of NaOH. In the temperature range between 2 and 23 degrees C, delta Hdiss is endothermic with an average value of ca. 2.5 kcal.mol-1 and shows no clear-cut temperature dependence. In the temperature range between 23 and 52 degrees C, delta Hdiss calculated after subtraction of the heat of neutralization and dilution is not the true dissociation enthalpy but includes contributions from the phase transition enthalpy, delta Htrans, as the pH jump induces a transition from the gel to the liquid-crystalline phase. The delta Cp for the reaction enthalpy observed in this temperature range is positive. Above 53 degrees C, the pH jump induces again only the dissociation of the second proton, and the bilayers stay in the liquid-crystalline phase. In this temperature range, delta Hdiss seems to decrease with temperature. The thermodynamic data from titration calorimetry and differential scanning calorimetry as a function of pH can be combined to construct a complete enthalpy-temperature diagram of DMPA in its two ionization states.  相似文献   

13.
A Ginsburg  M Zolkiewski 《Biochemistry》1991,30(39):9421-9429
Partial unfolding of dodecameric glutamine synthetase (GS) from Escherichia coli has been studied by differential scanning calorimetry (DSC). A single endotherm (tm = 51.6 +/- 0.1 degrees C and delta Hcal = 211 +/- 4 kcal/mol of enzyme) was observed in DSC experiments with Mn.GS in the presence of 1.0 mM free Mn2+ and 100 mM KCl at pH 7. The dodecameric structure of Mn.GS was retained throughout heating cycles, and thermal transitions were reversible as shown by rescans [with 6-18 mg of GS (Mr 622,000) from 15 to 68 degrees C at 20-60 degrees C/h] and by greater than 93% recovery of activity. A cooperative ratio delta Hcal/delta HvH of 1.6 +/- 0.1 and deconvolution analysis show two cooperative units (two-state transitions): t1 = 50.4 and t2 = 51.7 degrees C; the ratio of the relative sizes of thermally labile domains is approximately 1:2 as judged by delta H2/delta H1 approximately equal to 2. However, the thermally induced overall enthalpy change (0.34 cal/g) for GS dodecamer is only 5-10% of that for thermal unfolding of small globular proteins at 50 degrees C. The t1 and t2 values from deconvolutions of DSC data agree with t0.5 values previously calculated from spectral measurements of temperature-induced exposures of approximately 0.7 of 2 Trp and approximately 2 of 17 Tyr per subunit, respectively [Shrake et al. (1989) Biochemistry 28, 6281-6294], over a 14 degrees C temperature range using both stabilizing and destabilizing conditions for Mn.GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We studied the interaction between the 35 kDa apolipoprotein of canine pulmonary surfactant (SP 35) and five saturated phosphatidylcholines: distearoyl (DSPC), diheptadecanoyl (DHPC), dipalmitoyl (DPPC), dimyristoyl (DMPC), and dilauroyl (DLPC); and two monoenoic unsaturated phosphatidylcholines: dioleoyl (DOPC) and dielaidyl (DEPC), using temperatures at which all of the phospholipids except DOPC were in both the gel and liquid-crystalline states. The experiments were carried out in a buffer without Ca2+. The amount of apolipoprotein which was bound by both small unilamellar and multilayered vesicles of these lipids decreased as the temperature was increased. Moreover, near the temperatures of the phase transitions of all lipids except DLPC, there was an abrupt and marked reduction in binding of protein, in that over a 3-4 degree change in temperature there was an abrupt decrease in bound apolipoprotein. A similar change in binding occurred using DLPC, although the relatively large changes in bound protein occurred at about 10 and 20 degrees C, temperatures which are above the phase transition temperature of this lipid. Experiments using DOPC were limited to temperatures above the phase transition, and apolipoprotein binding was low. Experiments monitoring the intrinsic fluorescence of the protein, and the fluorescence of bis-1-anilino-8-naphthalene sulfonic acid bound to the protein, revealed a possible conformational change at about 40 degrees C. Measurement of intrinsic fluorescence provided the same result whether or not the protein was associated with lipid. DSC of the apolipoprotein indicated that this change was not associated with a measurable thermogenic process. We found that the interaction with DPPC was reversible at 42 degrees C, and we measured the thermodynamic parameters of the interaction at this temperature. These were: delta G0 = -8.0 kcal/mol apolipoprotein; delta H0 = -88 kcal/mol; delta S0 = -254 cal/Cdeg per mol. We conclude that the interaction between SP 35 and saturated phosphatidylcholines is temperature sensitive, and this probably reflects differences in the ability of gel and liquid-crystalline phospholipids to bind this protein. Both the delta H0 and delta S0 of the interaction are negative, and may reflect an immobilization of phospholipid around the apolipoprotein to form a boundary layer. This hypothesis is consistent with the findings obtained by DSC, in which the enthalpy of the phase transition of DMPC in lipid-apolipoprotein recombinants was found to be about 60% of that expected for a pure and unperturbed multilamellar dispersion.  相似文献   

15.
Nanodisks (ND) are discrete nanometer scale phospholipid bilayers whose perimeter is circumscribed by amphipathic apolipoproteins. The membranous environment of ND serves as a matrix for solubilizing the polyene antibiotic amphotericin B (AMB). The spectral properties of AMB in ND are dependent upon AMB concentration. Whereas AMB-ND prepared at a concentration of 2.5 mg AMB per 10 mg phospholipid are consistent with AMB self association in the ND membrane environment, AMB-ND prepared at 0.25 or 0.025 mg AMB per 10 mg phospholipid give rise to spectra reminiscent of AMB in organic solvent. Incubation of ND prepared at a phospholipid/AMB ratio of 400:1 (w/w) at 37 degrees C for 1 h induced a shift in absorbance and near UV circular dichroism spectra consistent with antibiotic self-association. The kinetics of this spectral transition were investigated as a function of incubation temperature. While no change in A388 nm occurred in incubations at 20 degrees C, a time-dependent decrease in A388 nm was observed at 25, 30 and 37 degrees C. Inclusion of ergosterol in the ND membrane attenuated temperature-induced AMB spectral changes. In Saccharomyces cerevisiae growth inhibition assays, ND containing self associated AMB were somewhat less effective than ND possessing a greater proportion of monomeric AMB. On the other hand, inclusion of ergosterol or cholesterol in the ND particle did not alter the growth inhibition properties of AMB-ND. The miniature membrane environment of ND provides a novel milieu for solubilization and characterization of lipophilic biomolecules.  相似文献   

16.
Sterol methylation in Saccharomyces cerevisiae.   总被引:5,自引:2,他引:3       下载免费PDF全文
Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5.  相似文献   

17.
The unfolding of human apolipoprotein B-100 in its native lipid environment, low density lipoprotein (LDL), and in a soluble, lipid-free complex with sodium deoxycholate (NaDC) has been examined using differential scanning calorimetry (DSC) and near UV circular dichroic (CD) spectroscopy. High resolution DSC shows that LDL undergoes three thermal transitions. The first is reversible and corresponds to the order-disorder transition of the core-located cholesteryl esters (CE) (Tm = 31.1 degrees C, delta H = 0.75 cal/g CE). The second, previously unreported, is reversible with heating up to 65 degrees C (Tm = 57.1 degrees C, delta H = 0.20 cal/g apoB) and coincides with a reversible change in the tertiary structure of apoB as shown by near UV-CD. No alteration in the secondary structure of apoB is observed over this temperature range. The third transition is irreversible (Tm = 73.5 degrees C, delta H = 0.99 cal/g apoB) and coincides with disruption of the LDL particle and denaturation of apoB. The ratio of delta H/delta HvH for the reversible protein-related transition suggests that this is a two-state event that correlates with a change in the overall tertiary structure of the entire apoB molecule. The second protein-related transition is complex and coincides with irreversible denaturation. ApoB solubilized in NaDC undergoes three thermal transitions. The first two are reversible (Tm = 49.7 degrees C, delta H = 1.13 cal/g apoB; Tm = 56.4 degrees C, delta H = 2.55 cal/g apoB, respectively) and coincide with alterations in both secondary and tertiary structure of apoB. The changes in secondary structure reflect an increase in random coil conformation with a concomitant decrease in beta-structure, while the change in tertiary structure suggests that the conformation of the disulfide bonds is altered. The third transition is irreversible (Tm = 66.6 degrees C, delta H = 0.54 cal/g apoB) and coincides with complete denaturation of apoB and disruption of the NaDC micelle. The ratio of delta H/delta HvH for the two reversible transitions indicates that each of these transitions is complex which may suggest that several regions or domains of apoB are involved in each thermal event.  相似文献   

18.
A stopped-flow spectrofluorometer equipped with a rapid scanning emission monochromator was utilized to monitor the binding of adriamycin to phospholipid liposomes. The latter process is evident as a decrease in fluorescence emission from a trace amount of a pyrene-labeled phospholipid analog (PPDPG, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phospho-rac-++ +glyce rol) used as a donor for resonance energy transfer to adriamycin. For zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, fluorescence decay was slow, with a half-time t1/2 of approximately 2 s. When the mole fraction of the acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), was increased to XPG >/= 0.04, the decay of fluorescence became double exponential, and an additional, significantly faster process with t1/2 in the range between 2 and 4 ms was observed. Subsequently, as XPG was increased further, the amplitude of the fast process increased, whereas the slower process was attenuated, its t1/2 increasing to 20 s. Increasing [NaCl] above 50 mM or [CaCl2] above 150 microM abolished the fast component, thus confirming this interaction to be electrostatic. The critical dependence of the fast component on XPG allows the use of this process to probe the organization of acidic phospholipids in liposomes. This was demonstrated with 1, 2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes incorporating PPDPG (XPPDPG = 0.03), i.e., conditions where XPG in fluid bilayers is below the required threshold yielding the fast component. In keeping with the presence of clusters of PPDPG, the fast component was observed for gel-state liposomes. At approximately 34 degreesC (i.e., 6 degrees below Tm), the slower fluorescence decay also appeared, and it was seen throughout the main phase transition region as well as in the liquid-crystalline state. The fluorescence decay behavior at temperatures below, above, and at the main phase transition temperature is interpreted in terms of thermal density fluctuations and an intermediate state between gel and liquid-crystalline states being involved in the phospholipid main phase transition. This is the first observation of a cluster constituted by acidic phospholipids controlling the membrane association of a drug.  相似文献   

19.
Differential scanning calorimetry and x-ray diffraction have been used to investigate hydrated multibilayers of N-lignoceryl sphingomyelin (C24:0-SM) in the hydration range 0-75 wt % H2O. Anhydrous C24:0-SM exhibits a single endothermic transition at 81.3 degrees C (delta H = 3.6 kcal/mol). At low hydration (12.1 wt % H2O), three different endothermic transitions are observed: low-temperature transition (T1) at 39.4 degrees C (transition enthalpy (delta H1) = 2.8 kcal/mol), intermediate-temperature transition (T2) at 45.5 degrees C, and high-temperature transition (T3) at 51.3 degrees C (combined transition enthalpy (delta H2 + 3) = 5.03 kcal/mol). On increasing hydration, all three transition temperatures of C24:0-SM decrease slightly to reach limiting values of 36.7 degrees C (T1), 44.4 degrees C (T2), and 48.4 degrees C (T3) at approximately 20 wt % H2O. At 22 degrees C (below T1), x-ray diffraction of C24:0-SM at different hydration levels shows two wide-angle reflections, a sharp one at 1/4.2 A-1 and a more diffuse one at 1/4.0 A-1 together with lamellar reflections corresponding to bilayer periodicities increasing from d = 65.4 A to a limiting value of 71.1 A. Electron density profiles show a constant bilayer thickness dp-p approximately 50 A. In contrast, at 40 degrees C (between T1 and T2) a single sharp wide-angle reflection at approximately 1/4.2 A-1 is observed. The lamellar reflections correspond to a larger bilayer periodicity (increasing from d = 69.3-80.2 A) and there is some increase in dp-p (52-56 A) with hydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
By employing diphenylhexatriene steady-state fluorescence anisotropy, pyrenedecanoic acid excimer formation, and high sensitivity scanning calorimetry we have demonstrated that the liposomes containing phosphatidylethanolamine (PE) and various mole fractions of ganglioside GD1a had a gel-liquid crystalline phase transition between 15 and 25 degrees C. Calorimetric measurements indicated that these phase transitions were broad and centered between 17 and 21 degrees C. The enthalpy change of the transition was linearly dependent on the ganglioside concentration up to 10.0 mol% and plateaued between 11.4-16.2 mol%. The high enthalpy change (37 kcal/mol of GD1a added into the PE bilayer) indicates the existence of PE-GD1a complex structure in the liposomal membrane. It is proposed that semi-fluid domains containing six PE and one ganglioside molecule are present in the PE-GD1a membranes at temperatures above gel-liquid crystalline phase transition. The Sendai virus induced leakage of PE-GD1a liposomes has been investigated by using an entrapped, self-quenching fluorescent dye, calcein. The leakage rate was dependent on the mole fraction of ganglioside GD1a and was maximal at 6.3 mol%. Arrhenius plots of the leakage rates showed breaks in the 20-25 degrees C temperature range, which correspond to the gel-liquid crystalline phase transition of the target liposomes. These data suggest that the rate of Sendai virus-induced leakage can be regulated via fluidity modulation by changing the PE to GD1a ratio at constant temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号