首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A bacterium classified as Rhodococcus opacus, which is able to use pyridine (a potentially growth-inhibiting substrate) as its sole source of carbon, energy and nitrogen, was isolated. In a carbon-limited chemostat culture, the kinetics was determined for growth on both pyridine and a mixture of pyridine and fructose (9 mM/22.15 mM). With growth on pyridine, stable steady states were achieved up to dilution rates of about 0.1 h-1. A further increase in the dilution rate resulted in the progressive accumulation of pyridine in the culture liquid and the cells were washed out. The maximum specific growth rate (μmax = 0.23 h-1) and the K S value (0.22 mM) for growth on pyridine were determined from the residual pyridine concentrations measured within the range of stable steady states. With growth on the substrate mixture, the specific pyridine consumption rates and the residual pyridine concentrations were lower at similar dilution rates than with growth on pyridine alone, and stable steady states were established at dilution rates of up to 0.13 h-1. The maximum pyridine degradation rate was enhanced to 270 mg pyridine l-1 h-1 compared to 210 mg pyridine l-1 h-1with growth on pyridine as a single substrate. An external nitrogen source did not need to be added in the case of growth on the substrate mixture. Fructose was assimilated by means of ammonium released from pyridine. Analysis of the nitrogen balance furnished proof that pyridine is an energy-deficient substrate; pyridine was assimilated and dissimilated at a ratio of 1 mol/0.67 mol respectively. The resulting yield coefficient was about 0.55 g dry weight/g pyridine. Moreover, it was demonstrated that, in regard to the biologically usable energy, 1 mol pyridine corresponds to 0.43 mol fructose. Received: 3 July 1995/Received revision: 19 October 1995/Accepted: 24 October 1995  相似文献   

2.
Sulfide utilization by purple nonsulfur bacteria   总被引:1,自引:0,他引:1  
Summary The purple nonsulfur bacteria Rhodospirillum rubrum SMG 107, Rhodopseudomonas capsulata SMG 155, Rps. sphaeroides SMG 158 and Rps. palustris SMG 124 were tested for a possible utilization of sulfide. The first three strains were found to oxidize sulfide to extracellular elemental sulfur only, whereas Rps. palustris SMG 124 converted sulfide into sulfate without intermediate accumulation of elemental sulfur. Growth ceased at lower sulfide concentrations than usually found with purple sulfur bacteria. In consequence of the low sulfide tolerance information on the specific growth rates obtainable with sulfide as photosynthetic electron donor could not be provided by cultivation in batch cultures. Sulfide-limited chemostat cultures of Rps. capsulata SMG 155 showed that the maximum specific growth rate was close to 0.14 h-1 (doubling time 5 h). Sulfide was converted into extracellular elemental sulfur at all dilution rates tested. The maximum specific growth rate of Rps. palustris SMG 124 was found to be much lower (less than 0.03 h-1). Sulfate was the only product of the conversion of sulfide.These data show that at least some purple nonsulfur bacteria may play a role in the dissimilatory sulfur cycle in nature. Taxonomic implications of our results are discussed.Abbreviation SMG Sammlung für Mikroorganismen, Göttingen  相似文献   

3.
Average cell volume and cell buoyant density of Chromatium vinosum DSM 185 growing in sulfide limited continuous cultures, were found to increase with increasing dilution rate. It was found that the increase in buoyant density was mainly a consequence of the accumulation of elemental sulfur. The contribution of other compounds such as protein, bacteriochlorophyll a and glycogen, was almost negligible. It was concluded that the sulfur globule is constituted by at least two fractions, sulfur and an unidentified moiety with a density lower than that of sulfur, probably water.A model was developed to explain the relation between the specific content of sulfur and cell buoyant density. The model also predicts the impact of elemental sulfur on the volume of the cell. It was found that in addition to the accumulation of sulfur the average cell volume also changes with the specific growth rate.In shift-up experiments (sulfur accumulation) the actual phenomena agreed with those predicted by the model, however, this was not so during shift-down (sulfur depletion). It is suggested that this difference is due to the fact that during the shift-down, elemental sulfur and the unidentified moiety are being depleted at different rates.Non-standard abbreviations BChl bacteriochlorophyll - PHB poly--hydroxybutyric acid - D dilution rate - specific growth rate - S R reservoir concentration of limiting substrate  相似文献   

4.
Average specific density of individual cells of pure cultures of Chromatium warmingii and Chromatium vinosum were measured by isopicnic gradient centrifugation with Percoll during growth at constant illumination as a function of the increasing content of intracellular sulfur. Cell number and volume, bacteriochlorophyll a, sulfide, and sulfur were followed in the cultures along with cellular buoyant density. Poly--hydroxybutyrate was monitored at several points during growth of the cultures. The density of C. warmingii changed from 1.071 to 1.108 g cm-3 (sulfur content per cell varied from 0 to 1.71pg). C. vinosum changed its density from 1.096 to 1.160 g cm-3 (sulfur content per cell varied from 0 to 0.43 pg). Maximum sulfur content in pg of sulfur per m3 of cell volume were 0.178 for C. warmingii and 0.294 for C. vinosum. Measurement of the differences in buoyant density, volume and sulfur content before and after ethanol extraction of cells with and without intracellular sulfur, allowed tentatively to estimate the density of sulfur inside the cells as 1.219 g cm-3. Isolation of sulfur globules and centrifugation in density gradients gave a density higher than 1.143 g cm-3 for these intracellular inclusions.Non-common abbreviations Bchl Bacteriochlorophyll - DMB Density Marker Beads - PHB poly--hydroxybutyrate  相似文献   

5.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

6.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

7.
Sulfide oxidation in the phototrophic purple sulfur bacterium Chromatium vinosum D (DSMZ 180T) was studied by insertional inactivation of the fccAB genes, which encode flavocytochrome c, a protein that exhibits sulfide dehydrogenase activity in vitro. Flavocytochrome c is located in the periplasmic space as shown by a PhoA fusion to the signal peptide of the hemoprotein subunit. The genotype of the flavocytochrome-c-deficient Chr. vinosum strain FD1 was verified by Southern hybridization and PCR, and the absence of flavocytochrome c in the mutant was proven at the protein level. The oxidation of thiosulfate and intracellular sulfur by the flavocytochrome-c-deficient mutant was comparable to that of the wild-type. Disruption of the fccAB genes did not have any significant effect on the sulfide-oxidizing ability of the cells, showing that flavocytochrome c is not essential for oxidation of sulfide to intracellular sulfur and indicating the presence of a distinct sulfide-oxidizing system. In accordance with these results, Chr. vinosum extracts catalyzed electron transfer from sulfide to externally added duroquinone, indicating the presence of the enzyme sulfide:quinone oxidoreductase (EC 1.8.5.-). Further investigations showed that the sulfide:quinone oxidoreductase activity was sensitive to heat and to quinone analogue inhibitors. The enzyme is strictly membrane-bound and is constitutively expressed. The presence of sulfide:quinone oxidoreductase points to a connection of sulfide oxidation to the membrane electron transport system at the level of the quinone pool in Chr. vinosum. Received: 5 November 1997 / Accepted: 30 March 1998  相似文献   

8.
The purpose of this study was to find a possible explanation for the coexistence of large and small purple sulfur bacteria in natural habitats. Experiments were carried out withChromatium vinosum SMG 185 andChromatium weissei SMG 171, grown in both batch and continuous cultures. The data may be summarized as follows: (a) In continuous light, with sulfide as growth rate-limiting substrate, the specific growth rate ofChr. vinosum exceeds that ofChr. weissei regardless of the sulfide concentration employed. Consequently,Chr. weissei is unable to compete successfully and is washed out in continuous cultures. (b) With intermittant light-dark illumination, the organisms showed balanced coexistence when grown in continuous cultures. The “steady-state” abundance ofChr. vinosum was found to be positively related to the length of the light period, and that ofChr. weissei to the length of the dark period. (c) Sulfide added during darkness is rapidly oxidized on subsequent illumination, resulting in the intracellular storage of reserve substances, which are later utilized for growth. The rate of sulfide oxidation/mg cell N/hr was found to be over twice as high inChr. weissei as inChr. vinosum. The observed coexistence may be explained as follows. In the light, with both strains growing, most of the sulfide will be oxidized byChr. vinosum [see (a)]. In the dark, sulfide accumulates. On illumination, the greater part of the accumulated sulfide will be oxidized byChr. weissei [see (c)]. A changed light-dark regimen should then have the effect as observed [see (b)]. These observations suggest that intermittant illumination may, at least in part explain the observed coexistence of both types of purple sulfur bacteria in nature.  相似文献   

9.
Sulfur sources capable of replacing sulfide were surveyed for biomethanation from H2 and CO2 by thermoautotrophic methanogen, Methanobacterium thermoautotrophicum. Among sulfur containing compounds tested, l-cysteine, thiosulfate and coenzyme M gave poor growth when added as sulfur sources, whereas simultaneous addition of two sulfur sources, l-cysteine+thiosulfate, l-cysteine+l-methionine or l-cysteine+coenzyme M stimulated the growth.In a pressure-controlled fermentor system developed to obtain stoichiometry between input and output gases, the ratio of H2 and CO2 consumption to CH4 production was almost stoichiometric, and when l-cysteine and thiosulfate or l-methionine were used in place of sulfide (control) similar growth patterns were observed. In a culture with continuous supply of substrates gases (1.3 vvm) and sulfur sources of 1 mM l-cysteine+2 mM thiosulfate, specific growth rate and specific methane production rate were 0.35 h and 3.24 l g−1h−1, respectively, compared to 0.22 h−1 and 5.76 l gh−1 with Na2 S.  相似文献   

10.
The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086 h?1 with an initial cell mass of less than 0.6 OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9 OD600 or higher, or at low dilution rates (<0.05 h?1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron‐supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6 h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron‐limited chemostat cultures was observed compared to iron‐supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955–964. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Cultures of Chromatium vinosum, devoid of sulfur globules, were supplemented with sulfide and incubated under anoxic conditions in the light. The concentrations of sulfide, polysulfides, thiosulfate, polythionates and elemental sulfur (sulfur rings) were monitored for 3 days by ion-chromatography and reversed-phase HPLC. While sulfide disappeared rapidly, thiosulfate and elemental sulfur (S6, S7 S8 rings) were formed. After sulfide depletion, the concentration of thiosulfate decreased fairly rapidly, but elemental sulfur was oxidized very slowly to sulfate. Neither polysulfides (S x 2– ), polythionates (SnO 6 2– , n=4–6), nor other polysulfur compounds could be detected, which is in accordance with the fact that sulfide-grown cells were able to oxidize polysulfide without lag. The nature of the intracellular sulfur globules is discussed.  相似文献   

12.
Depending on the biomass yield on glucose and the cell morphology ofBacillus thuringiensis, three different metabolic states were observed in continuous culture. At dilution rates between 0.18 h–1 and 0.31 h–1 vegetative cells, sporulating bacteria and spores coexisted, while glucose and amino acids were consumed. Only vegetative cells were observed at dilution rates between 0.42 h–1 and 0.47 h–1 and glucose was used as the main carbon and energy source. AtD = 0.50 h–1 the biomass yield on glucose decreases sharply. To define better the specific growth rate range in which the microorganism uses mainly glucose, a dilution rate of 0.25–0.45 h–1 was studied. The experimental data could be adjusted to a Monod model and the following rate coefficients and growth yields were determined: maximum specific growth rate 0.54 h–1, saturation constant 0.56 mg glucose ml–1, biomass growth yields 0.43 g cells (g glucose)–1, and 0.76 g cells (g oxygen)–1, and maintenance coefficients 0.065 g glucose (g cells)–1 h–1 and 0.039 g oxygen (g cells)–1 h–1.  相似文献   

13.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

14.
Exponentially fed-batch cultures (EFBC) of a murine hybridoma in T-flasks were explored as a simple alternative experimental tool to chemostats for the study of metabolism, growth and monoclonal antibody (MAb) production kinetics. EFBC were operated in the variable volume mode using an exponentially increasing and predetermined stepwise feeding profile of fresh complete medium. The dynamic and steady-state behaviors of the EFBC coincided with those reported for chemostats at dilution rates below the maximum growth rate. In particular, steady-state for growth rate and concentration of viable cells, glucose, and lactate was attained at different dilution rates between 0.005 and 0.05 h–1. For such a range, the glucose and lactate metabolic quotients and the steady-state glucose concentration increased, whereas total MAb, volumetric, and specific MAb production rates decreased 65-, 6-, and 3-fold, respectively, with increasing dilution rates. The lactate from glucose yield remained relatively constant for dilution rates up to 0.03 h–1, where it started to decrease. In contrast, viability remained above 80% at high dilution rates but rapidly decreased at dilution rates below 0.02 h–1. No true washout occurred during operation above the maximum growth, as concluded from the constant viable cell number. However, growth rate decreased to as low as 0.01 h–1, suggesting the requirement of a minimum cell density, and concomitant autocrine growth factors, for growth. Chemostat operation drawbacks were avoided by EFBC in T-flasks. Namely, simple and stable operation was obtained at dilution rates ranging from very low to above the maximum growth rate. Furthermore, simultaneous operation of multiple experiments in reduced size was possible, minimizing start-up time, media and equipment costs.Abbreviations EFBC exponentially-fed batch culture - CSC continuous suspended culture - MAb monoclonal antibody - D dilution rate - q i metabolic quotient or specific rate of consumption or production of i  相似文献   

15.
Summary A test system was set up where the build-up of a biofilm on a defined surface could be studied in a carbon source limited chemostat.The attachment of P. putida ATCC 11172 to glass when growing on L-asparagine was studied at different dilution rates (specific growth rates) from 0.1 to 1.5 h–1 The number of attached colony forming units (cfu) increased with dilution rate from 1×106 cfu/cm2 at 0.1 h–1 to 4×107 cfu/cm2 at 1.0 h–1 and then the attachment decreased to about 6×106 cfu/cm2 at higher dilution rates (1.1–1.5 h–1). The number of attached cfu was measured after 24 h exposure. The value of the maximum specific growth rate in batch culture was 0.6 h–1.The total amount of attached cell-mass followed roughly the same pattern as the viable count.The viable count of the cells suspended in the growth medium showed its lowest value at the same dilution rate as resulted in maximum adhesion.It was shown that the effect of growth rate on the biofilm build-up of P. putida is significant, and ought to be borne in mind when continuous culture systems are set up and results evaluated.  相似文献   

16.
Vibrio gazogenes ATCC 29988 growth and prodigiosin synthesis were studied in batch culture on complex and defined media and in chemostat cultures on defined medium. In batch culture on complex medium, a maximum growth rate of 0.75 h−1 and a maximum prodigiosin concentration of 80 ng of prodigiosin · mg of cell protein−1 were observed. In batch culture on defined medium, maximum growth rates were lower (maximum growth rate, 0.40 h−1), and maximum prodigiosin concentrations were higher (1,500 ng · mg of protein−1). In batch culture on either complex or defined medium, growth was characterized by a period of logarithmic growth followed by a period of linear growth; on either medium, prodigiosin biosynthesis was maximum during linear growth. In batch culture on defined medium, the initial concentration of glucose optimal for growth and pigment production was 3.0%; higher levels of glucose suppressed synthesis of the pigment. V. gazogenes had an absolute requirement for Na+; optimal growth occurred in the presence of 100 mM NaCl. Increases in the concentration of Na+ up to 600 mM resulted in further increases in the concentration of pigment in the broth. Prodigiosin was synthesized at a maximum level in the presence of inorganic phosphate concentrations suboptimal for growth. Concentrations of KH2PO4 above 0.4 mM caused decreased pigment synthesis, whereas maximum cell growth occurred at 1.0 mM. Optimal growth and pigment production occurred in the presence of 8 to 16 mg of ferric ion · liter−1, with higher concentrations proving inhibitory to both growth and pigment production. Both growth and pigment production were found to decrease with increased concentrations of p-aminobenzoic acid. The highest specific concentration of prodigiosin (3,480 ng · mg protein−1) was observed in chemostat cultures at a dilution rate of 0.057 h−1. The specific rate of prodigiosin production at this dilution rate was approximately 80% greater than that observed in batch culture on defined medium. At dilution rates greater than 0.057 h−1, the concentration of cells decreased with increasing dilution rate, resulting in a profile comparable to that expected for linear growth kinetics. No explanation could be found for the linear growth profiles obtained for both batch and chemostat cultures.  相似文献   

17.
Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an 44-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.Non-common abbreviations APS adenylyl sulfate - SDS sodium dodecyl sulfate  相似文献   

18.
Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. The proteins associated with sulfur globules of Chromatium vinosum and Thiocapsa roseopersicina were isolated by extraction into 50% aqueous acetonitrile containing 1% trifluoroacetic acid and 10 mM dithiothreitol. The extracted proteins were separated by reversed-phase HPLC, revealing three major proteins from C. vinosum and two from T. roseopersicina. All of these proteins have similar, rather unusual amino acid compositions, being rich in glycine and aromatic amino acids, particularly tyrosine. The molecular masses of the C. vinosum proteins were determined to be 10,498, 10,651, and 8,479 Da, while those from T. roseopersicina were found to be 10,661 and 8,759 Da by laser desorption time-of-flight mass spectrometry. The larger T. roseopersicina protein is N-terminally blocked, probably by acetylation, but small amounts of the unblocked form (mass = 10,619) were also isolated by HPLC. Protein sequencing showed that the two larger C. vinosum proteins are homologous to each other and to the large T. roseopersicina protein. The 8,479 Da C. vinosum and 8,759 Da T. roseopersicina proteins are also homologous, indicating that sulfur globule proteins are conserved between different species of purple sulfur bacteria.Abbreviations BNPS-skatole 2 (2-Nitrophenylsulfenyl)-3-methyl-3-bromoindolenine - CNB Cyanogen bromide - Cv1, Cv2, and Cv3 Chromatium vinosum sulfur globule proteins - SGP and SGPs Sulfur globule protein(s) - TFA Trifluoroacetic acid - Tr0, Tr1, and Tr2 Thiocapsa roseopersicina sulfur globule proteins  相似文献   

19.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

20.
Candida utiilis NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h−1 to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of 0.662 ± 0.002 gx/gcarb was obtained at a dilution rate of 0.4 h−1. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod kinetics. At maximum specific growth rate (μmax) 0.65 h−1, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 gcarb/1, 0.046 ± 0.003 grs/1, and 1.036 ± 0.001 gCOD/1, respectively. Maximum biomass productivity (Q x max) 2.8 ± 0.03 gx/1 h was obtained at a dilution rate of 0.5 h−1. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h−1, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h−1, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 gp/1 h, and 84.2 ± 0.42%, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号