首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kang BG  Burg SP 《Plant physiology》1972,49(4):631-633
Accumulation of carotenoid pigments in the shoot apex of etiolated pea (Pisum sativum cv. Alaska) seedlings is completely prevented by ethylene. Under certain conditions carotenoid synthesis is normally controlled by endogenously produced ethylene. The gas completely inhibits carotenoid synthesis induced either by continuous white light or brief illumination with red light, but only partially inhibits light-induced chlorophyll formation. Far red illumination followed by red illumination reverses the action of red light on carotenoid synthesis. Red light-induced carotenogenesis is partly or wholly caused by phytochrome-mediated inhibition of ethylene biosynthesis.  相似文献   

2.
Jacobsohn MK 《Plant physiology》1978,62(6):1000-1004
The effect of varying sequences of red and far red light on sterol biosynthesis in etiolated seedlings of Digitalis purpurea L. was examined. Red light caused a marked increase in the amounts of free and glycosidic sterols and a small decrease in esterified sterols during the first 4 hours after illumination. Far red light elicited the same response but to a lesser degree. Exposure to red followed by far red light or the reverse caused little or no increase in the amounts of free and glycosidic sterols. The magnitude of the increase in the amounts of sterols varied, depending upon the season in which the experiments were performed. The largest increments were obtained during the summer and fall, whereas the smallest were observed during the winter and spring. Correlation of these data with previous observations of an annual cycle in the sterol content of Digitalis seedlings showed that the maximum stimulation in sterol biosynthesis occurs when the endogenous level of sterols is minimal.

Sterol monoglycosides, acylmonoglycosides, and an unidentified sterol conjugate from the lipid extracts were quantitated. Changes in conjugated sterol content were related to the particular light conditions of each experiment. The results are discussed in terms of physiological cycles and the possible influence of hormones upon the control of sterol biosynthesis in Digitalis.

  相似文献   

3.
Klein AO  Pine K 《Plant physiology》1977,59(4):767-770
Red light-induced, far red light-reversible increase in etiolated bean (Phaseolus vulgaris, var. Asgrow Valentine) leaf polyribosomes was shown to be sensitive to actinomycin D, cycloheximide, and rifampicin inhibition. Actinomycin prevented response to red light if administered simultaneously with a 10-minute illumination, had no immediate effect if given 2 hours after illumination, but was again rapidly inhibitory at 4 and 6 hours. The effects of actinomycin and far red light were more than additive.  相似文献   

4.
Jen JJ 《Plant physiology》1977,59(4):628-629
Presence of phytochrome in two kinds of tomatoes (Lycopersicon esculentum Mill.), the yellow lutescent strain and cherry tomatoes (L. esculentum Mill. var. cerasiformecv. Red Cherry), was established by measuring the absorption difference spectra of the whole fruit after irradiation with red and with far red light. Phytochrome content was determined in yellow lutescent tomatoes and decreased gradually during the ripening period.  相似文献   

5.
6.
Light-induced coleoptile stimulation and mesocotyl suppression in etiolated Avena sativa (cv. Lodi) has been quantitated. Etiolated seedlings showed the greatest response to light when they were illuminated 48 to 56 hours after imbibition. Two low-irradiance photoresponses for each tissue have been described. Red light was 10 times more effective than green and 1,000 times more effective than far red light in evoking these responses. The first response, which resulted in a 45% mesocotyl suppression and 30% coleoptile stimulation, had a threshold at 10−14 einsteins per square centimeter and was saturated at 3.0 × 10−12 einsteins per square centimeter of red light. This very low-irradiance response could be induced by red, green, or far red light and was not photoreversible. Reciprocity failed if the duration of the red illumination exceeded 10 minutes. The low-irradiance response which resulted in 80% mesocotyl suppression and 60% coleoptile stimulation, had a threshold at 10−10 einsteins per square centimeter and was saturated at 3.0 × 10−8 einsteins per square centimeter of red light. A complete low-irradiance response could be induced by either red or green light but not by far red light. This response could be reversed by a far red dose 30 times greater than that of the initial red dose for both coleoptiles and mesocotyls. Reciprocity failed if the duration of the red illumination exceeded 170 minutes. Both of these responses can be explained by the action of phytochrome.  相似文献   

7.
Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.  相似文献   

8.
9.
10.
This article gives evidence that NAD kinase activity is controlled by the action of phytochrome. The NADP level rapidly increased in the cotyledons of seedlings of Pharbitis nil strain Violet (a short day plant), when the inductive dark for flowering was interrupted with a 5-minute illumination of red light. Illumination with far red light immediately after illumination with red light counteracted partly the effect of the latter.  相似文献   

11.
Lycopenc biosynthesis of parenchyma chromoplasts was studied in detached tomato fruits, Lycopersicum esculentum Mill, cv. Waltham Forcing, and found to be phytochrome mediated. A few minutes of red light during the day enhanced lycopene formation. Far-red irradiation did not enhance lyco-pene biosynthesis. Far-red following red nullified the promotive effect of red light. Lycopene content increased two-fold in the presence of abscisic acid. Ripening of tomatoes was inhibited when gibberellin, kinetin and ascorbic acid were applied to green tomatoes. Gibberellin (A3) was more inhibitory to lycopene synthesis than kinetin.  相似文献   

12.
13.
Brief exposure of etiolated maize seedlings to light induces large increases in adenylate kinase and inorganic pyrophosphatase activity of the leaf in the following 48 hr in the dark. Red light is more effective than white or far red light, and far red reverses the effect of red light, indicating phytochrome control. Out of several tested, only these 2 enzymes appear to be coordinately induced, which is consistant with their close functional relationship. For inorganic pyrophosphatase, light treatment induces biosynthesis of a distinctive form of the enzyme characteristic of chloroplasts, readily separable from the enzyme characteristic of etiolated tissue.  相似文献   

14.
Phytochrome-mediated Electric Potential Changes in Oat Seedlings   总被引:2,自引:2,他引:0  
Brief exposures to red light induce far red-reversible changes of 5 to 10 millivolts magnitude in the upper 1 centimeter of etiolated Avena coleoptiles. The changes begin within 15 seconds of the start of illumination and they continue for at least 12 minutes. The changes were measured using a flowing solution of 10 mm KCl to contact the surface of the coleoptile. A dark-grown coleoptile shows no change in response to far red light unless it first receives red light treatment. The second of two red light exposures is ineffective without an intervening far red treatment. Some characterization of these electric responses to light is presented.  相似文献   

15.
Radish plants ( Raphanus sativus L. cv. Saxa treib) were grown in the presence of three different herbicides interfering with the biosynthesis of cyclic carotenoids. The herbicides caused an accumulation of acyclic biosynthetic intermediates. Plants were then irradiated using four different light programs in order to gain more insight into the first steps of carotenoid biosynthesis and their control by light and phytochrome. Plants grown in the dark in the presence of SAN 6706 or aminotriazole accumulated the acyclic intermediate phytoene, and those treated with J 852, the intermediates phytoene, phytofluene and zeta-carotene. In herbicide-treated plants short time irradiation with red light enhanced the formation of phytoene, phytofluene, zeta-carotene or lycopene, consistent with an effect of phytochrome on the early steps of carotenoid biosynthesis. Biosynthesis of cyclic carotenoids was also enhanced by red light in the untreated controls. In amitrole-treated plants formation of β-carotene, but not that of xanthophylls was stimulated by red light. In many cases neither the red light-induced biosynthesis of cyclic carotenoids nor the formation of acyclic intermediates could be prevented by a subsequent irradiation with far-red light. Similar enhancement as with red light was also obtained after treatment with far-red light only. Presented data may be taken as evidence that the biosynthesis and dehydrogenation of phytoene and the cyclization of lycopene are activated by a low threshold of active phytochrome. This may be further supported by the observation that far-red light itself stimulated carotenoid biosynthesis.  相似文献   

16.
We investigated the change of root net proton excretion of seedlings of Triticum aestivum L. and Zea mays L. with daily variation of illumination using a multi-channel pH-stat system. We found an increase of net proton excretion during darkness and a drop after the beginning of illumination. Inhibition of carotenoid biosynthesis by norflurazone and photooxidation of chlorophylls did not change the periodicity or its induction. The induction of diurnal periodicity was possible with blue, green and red light. After induction the oscillation of net proton excretion continued for at least two cycles under constant light. We conclude that net H+ excretion of wheat and maize roots may be regulated by an endogenous clock or by a signal from the leaves. The nature of such a hypothetical signal remains unknown.  相似文献   

17.
Effects of the herbicide san 9789 on photomorphogenic responses   总被引:13,自引:9,他引:4       下载免费PDF全文
The herbicide, 4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)- 3(2H)-pyridazinone (San 9789), an inhibitor that prevents both carotenoid and chlorophyll accumulation and normal chloroplast development in white light, does not affect the physiological effectiveness of phytochrome in dark-and light-grown plants. Red/far red reversibility of growth inhibition, stimulation of anthocyanin synthesis, and stimulation of phenylalanine ammonia-lyase synthesis are not significantly different in plants grown with and without San 9789. Despite the complete absence of photosynthesis, flowering could be induced in the long day plant Hordeum vulgare L. when sucrose was provided to the leaves. Since the nonphotochemical reactions of phytochrome also are not affected by the herbicide, San 9789 may be used as a tool to study the phytochrome system spectrophotometrically in plants grown for relatively long periods under high intensity white light.  相似文献   

18.
Newman DW 《Plant physiology》1971,48(3):300-302
Barley (Hordeum vulgare) leaf tissue was either (a) exposed to continuous red light or (b) exposed to red, far red, or red followed by far red light. The fatty acid composition and incorporation of acetate-2-14C into linolenate were determined. Changes occurred in the fatty acid composition of dark-grown barley leaves regardless of whether the plants were subsequently exposed to red light or whether the tissue remained in the dark. Measurements were also made of the fatty acids of the coleoptile. Red light treatment did not reduce the lag period for the synthesis of linolenate when chlorophyll synthesis was inhibited. It appears that the desaturation process per se in the synthesis of linolenate is not phytochrome-mediated but may appear to be phytochrome mediated if, possibly, galactolipid and chlorophyll syntheses occur concomitantly.  相似文献   

19.
Red and far red light distinctly influence the initial phytochrome-mediated phase of cold acclimation in red-osier dogwood (Cornus stolonifera). Under controlled conditions, short days and end-of-day far red light exposure after long days promote growth cessation, cold acclimation, and subsequent cold hardening of dogwood stems in response to low temperature. Nuclear magnetic resonance absorption spectra of the water in internode stem sections imply that the short day-induced phase of cold acclimation involves a change in tissue hydration, at least in part, due to a substantial reduction in bulk phase water as a result of senescence and loss of water from the pith. Seasonal responses to light and an attempt to induce early acclimation under natural conditions with end-of-day far red light are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号