首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Japanese isolates ofVerticillium dahliae were examined for vegetative compatibility relationships using nitrate-nonutilizing mutants. Four levels of vegetative compatibility were differentiated according to the degree of compatibility between the tester mutants ofnit1 and NitM. Wild-type growth with a complementation line greater than 5 mm wide was defined as “strong reaction (++)”, i.e., compatible. Ten out of 15 isolates showed compatibility and were separated into three groups, provisionally designated as VCGJ1, VCGJ2, and VCGJ3, depending upon their reactions. This method was used to estimate, genetic diversity within a local population ofV. dahliae. Another 12 isolates from Gunma Pref. were paired with tester isolates of the three vegetative compatibility groups proposed. Eight Gunma isolates were assigned to VCGJ1 or VCGJ2. Two isolates were incompatible with all testers. The remaining 2 isolates were self-incompatible. Thus, 18 out of 27 Japanese isolates ofV. dahliae were assigned to VCGs: 8 to VCGJ1, 7 to VCGJ2, and 3 to VCGJ3. VCGJ1 was compatible with both VCGJ2 and VCGJ3, but VCGJ2 and VCGJ3 showed a weak reaction with each other. Japanese isolates ofV. dahliae were thus demonstrated to form a VC group comprising three subgroups.  相似文献   

2.
Twenty-two isolates ofVerticillium dahliae, which were isolated from green soybeean (Glycine max), udo (Aralia cordata), horseradish (Cochlearia armoracia), sweetpea (Lathyrus odoratus), or a weed (Chenopodium album) were used in this study. Conidia and microsclerotia of these isolates were morphologically identical with those ofV. dahliae but did not coincide withV. longisporum. Pathogenicity tests showed that these isolates were of weak pathotype. Eleven of the 22 isolates, which were obtained from green soybean and udo, were pathogenic to green soybeans. Thus pathotype E was composed of two groups: ‘soybean pathotype’ which was pathogenic to green soybeans; and isolates nonpathogenic to green soybeans. The latter were defined as isolates of pathotype E in the narrow sense. Selected representativenit1 and NitM mutants of eachV. dahliae isolate were paired with VCGJ testers. Fourteen isolates ofV. dahliae (So1, So22, So23, So27, So28, So39, So40, So41, U54, U68, U69, U90, U95, and U115) showed complementary reactions with subgroups J1 and J3 and were assigned to subgroup J3. Isolate U108 was assigned to subgroup J2. Isolate HR1 was not compatible with any testers of VCGJ. With this exception, isolates of pathotype E in the narrow sense and those of ‘soybean pathotype’ were thus assigned to known VCGJ subgroups and did not form a unique group corresponding to their pathotype. ‘Soybean pathotype’ could not be distinguished among isolates of pathotype E by vegetative compatibility.  相似文献   

3.
An isolate ofVerticillum dahliae Vdp-4, pathogenic to both tomato and pepper (tomato-pepper pathotype), was examined for its vegetative compatibility with testers of the Japanese vegetative compatibility group (subgroups J1, J2, and J3). Seven isolates ofV. dahliae from the same field as Vdp-4 in Misato, Nagano Pref. and two isolates from Hokkaido were separately determined as either tomato pathotype (B) or pepper pathotype (C). Isolate 5922 previously reported as tomato-pepper pathotype was also examined. Compatiblenit1 and NitM mutants were obtained from all isolates except for isolates Vdp-3 and Vdt-10. The isolate of tomato-pepper pathotype Vdp-4 showed a strong reaction with VCGJ1 and J3 and was thus assigned to J3. Seven of these isolates showed compatibility and were assigned into three provisional subgroups. The isolate 5922 was self-incompatible.  相似文献   

4.
We examined the vegetative compatibility of 56 Japanese isolates provisionally assigned to four subgroups ofV. dahliae to estimate the genetic relatedness with testers of the standardized VCGs. Subgroup J1 was assigned to VCG 2A/B as a new category of assignment. Subgroup J2, except isolate Vdt 110, was assigned to VCG 2A, and subgroup J3, except isolate Vdf 1, was assigned to VCG 2B. Isolates Vdf 1 and Vdt 110 were assigned to VCG 2A/B. Subgroup J4 was assigned to two subgroups, VCG 4B for Vde 1 and VCG 4A/B for FY 3 and HR 1. Four isolates were compatible with both VCG 2 and 4. Isolate U56 was compatible with VCG 2A/B and 4A. Isolates of VCG 2A, Vdt 9 and FF1, were compatible with either VCG 4A or 4A/B. One isolate of VCG 2B, Vdp-4, was compatible with VCG 4A. Three isolates of subgroup J2 showed weak reactions with the testers of VCG 4. These isolates may be “bridging strains”. Japanese isolates were composed of two VCGs, 2 and 4, “bridging strains” compatible with these VCGs, and some self-incopatible isolates. Testers of VCG 1 and VCG 3 did not show any reactions with the Japanese isolates.  相似文献   

5.
Summary Tomato (Lycopersicon esculentum Mill.) seedlings were inoculated by dipping roots in suspensions of conidia ofVerticillium dahliae Kleb. There was a linear relationship between inoculum concentration and infection at 21 days after inoculation in steam-disinfested soil. Thereafter the number of infections per plant increased. At higher concentrations data indicated a synergistic interaction between conidia. Synergism was more pronounced and was detected earlier in soil not disinfested before inoculation. When conidia from 3-, 7-, and 14-day-old cultures were used, the greatest response was from 3-day-old cultures. A lower total response and lower rate of response to older inoculum indicated a decrease in aggressiveness of conidia with age. Older plants were less affected by the pathogen when plants inoculated at the fourth and sixth leaf stages with minimum root disturbances were compared. There was also an increase in infection with an increase in the volume of root zone infested. In field experiments infection reduced stand when roots were disturbed at inoculation. With minimum root disturbance yields were reduced without a reduction in stand. Part of thesis to be submitted by the senior author to the University of Stellenbosch in partial fulfilment of the Ph.D. (Agric.) degree.  相似文献   

6.
The relationship between Fe nutritional status and Verticillium wilt disease in tomatoes possessing single gene resistance to Race 1 of Verticillium dahliae was investigated using hydroponic culture media. Iron limiting conditions increased the sensitivity of resistant tomatoes to the pathogen as expressed by wilting and chlorosis. Distance of fungal vascular invasion was approximately the same in both Fe replete and Fe limited treatments. Comparison of near-isolines revealed that the magnitude of disease expressed in Fe deficient Pixie II (resistant) was considerably less than that expressed by the susceptible Pixie variety. Infection of tomato did not enhance the severity of low-Fe stress as quantified by root peroxidase activity and chlorophyll content of young leaves.  相似文献   

7.
Summary The penetration of metham into loess or heavy soils was studied by measuring the viability of microsclerotia (MS) ofV. dahliae placed at various depths in soil columns. Equal quantities of metham were applied in three ways; concentrated, dilute and combined application (i.e. concentrated and dilute application successively). Penetration was best in both soils when a combined application of the fungicide was used. In dilute application metham killed MS through the top 21 cm, wheres in concentrated application the fungicide killed MS placed between 26–38 cm. The combined application however, killed MS placed from 0–38 cm. It was found that using the combined application method, metham could kill MS in loess soil to a depth of 74 cm depending on depth of irrigation and amount of fungicide used. With mylone in granular form surface application was found to be better for MS control than incorporated or combined applications. Activities of metham and mylone againstV. dahliae MS increased with the increase of incubation temperatures; the highest acitivities of the fungicides were observed at 35°C. Determinations of lethal curves of MS treated with metham or mylone showed that in both heavy and loess soils activity of metham against MS was higher than that of mylone in granular form. In heavy soil the amount of metham or mylone required to achieve ED 50 was about 25% more than in loess soil.Contribution from the Agricultural Research Organisation, The Volcani Center, Bet Dagan, Israel. No. 212-E, 1978 Series.  相似文献   

8.
Run-Jin Liu 《Mycorrhiza》1995,5(4):293-297
The development of vesicular-arbuscular mycorrhizal fungi (VAMF): Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe, Glomus versiforme (Karsten) Berch, Sclerocystis sinuosa Gerdemann and Bakhi and Verticillium dahliae and the effects of the VAMF on the verticillium wilt of cotton (Gossypium hirsutum L. and Gossypium barbadense L.) were studied with paper pots, black plastic tubes and clay pots under natural growth conditions. All of the tested VAMF were able to infect all the cotton varieties used in the present experiment and typical vesicles and arbuscules were formed in the cortical cells of the cotton roots after inoculation. The cap cells, meristem, differentiating and elongating zones of the root tip were found to be colonized by the VAMF. In the case of most V. dahliae infection, the colonization occurred mostly from the root tip up to 2 cm. VAMF and V. dahliae mutually reduced their percentage of infection when inoculated simultaneously. VAMF inoculation reduced the numbers of germinable microsclerotia in the soil of the mycorrhizosphere, while the quantity of VAM fungal spores in the soil was not influenced by infection of with V. dahliae. The % of arbuscule colonization in roots was negatively correlated with the disease grades, while the numbers of vesicles in roots were not. These results suggest that certain vital competition and antagonistic reactions exist between VAMF and V. dahliae. VAMF reduced the incidence and disease indices of verticillium wilt of cotton during the whole growth phase. It is evident that cotton seedling growth was promoted, flowering was advanced, the numbers of flowers and bolls were increased, and this resulted in an increase in the yield of seed cotton. Among the VAMF species, Glomus versiforme was the most effective, and Sclerocystis sinuosa was inferior. So far as the author is aware, such an effect of VAMF on the increase of cotton wilt tolerance/resistance is reported here far the first time.  相似文献   

9.
Eight formulations of Penicillium oxalicum (FOR1 to FOR8) were obtained by the addition of various ingredients, in two separate steps of the production and drying of P. oxalicum conidia. These formulations were then evaluated against tomato wilt in three glasshouse (G1 to G3) and two field (F1 and F2) experiments. All formulations were applied to seedlings in seedbeds 7 days before transplanting at a rate of 107 spores g−1 seedbed substrate. The conidial viability of each formulation was estimated by measuring germination just after fluid bed-drying, before seedbed application and after 1 and 2 years of storage at 4 °C under vacuum. The densities of P. oxalicum were estimated in the seedbed substrate and in the rhizosphere of three plants per treatment just before transplanting. Initial conidial viability of formulations just after fluid bed-drying was approx. 80%, except for FOR1, FOR4, and FOR7 which were 60%. The initial viability was maintained up to 40–50% for 2 years of storage at 4 °C under vacuum, except for FOR1. All formulations had 50% viability at application time. Populations of P. oxalicum in the seedbed substrate just before transplanting were >106 cfu g−1 soil in G3 and F2; populations in rhizosphere were also >106 cfu g−1 fresh root, except for FOR3, FOR5, and FOR6 in G2. A range of 22–64% of disease reduction was observed with all formulations, although these reductions were not significant (p = 0.05) for FOR1, FOR4, and FOR5 in any experiment. Contrast analysis showed significant differences between biological treatments and untreated control (p = 0.05) in all experiments, but no significant differences between biological and chemical treatments. Initial conidial viability of P. oxalicum in formulations and populations of P. oxalicum in the seedbed substrate explained 78.26% of the variability in P. oxalicum populations in tomato rhizosphere before transplanting. Disease incidence in untreated plants was negatively correlated (r = −0.54) with the percentage of disease control. The relationship between the viability of formulations, the populations of P. oxalicum in seedbed and rhizosphere, and the control of tomato wilt is discussed.  相似文献   

10.
Resistance to verticillium wilt, a vascular disease causing yield losses in many crops, is conferred in tomato by a single dominant allele, Ve. A population segregating for the Ve allele was generated using near-isogenic tomato lines. Analysis of the parental tomato DNA using the polymerase chain reaction and 400 random primers, each 10 deoxyribonucleotides in length, produced 1,880 amplified DNA fragments. Of the four polymorphisms observed between the resistant and susceptible parental genotypes, only one was linked to the Ve gene. No recombination was observed between this DNA marker and the Ve locus, indicating that the linkage is less than 3.5±2.7 cM. The marker detected both the susceptible and resistant alleles, producing amplified DNA fragments of approximately 1,300 and 1,350 bp, respectively. The sequence of the primer, determined from cloned amplified products, was 5 CTCACATGCA 3 instead of the expected 5 CTCACATGCC 3. The marker will be of value to tomato breeding programs because of the tight linkage, Codominant nature, and analytical procedure utilized.  相似文献   

11.
Several bacterial and fungal strains have been evaluated as biocontrol agents (BCAs) against Verticillium dahliae. In these studies, the BCAs were applied as a root drenching inoculum; however, this application method may have an adverse effect on the native, beneficial for the plants, microbial community. In the present study, it was evaluated whether endophytic application by stem injecting a conidial suspension of the non pathogenic Fusarium oxysporum F2 strain, isolated from a V. dahliae suppressive compost amendment, could reduce significantly Verticillium wilt symptom development in eggplants. It was revealed that stem injection of F2 seven days before transplanting the seedlings to soil infested by V. dahliae microsclerotia resulted in reduced disease severity compared to the control treatment. To visualise F2 ramification into the plant vascular system eggplant stems were injected with an EGFP transformed F2 strain. It was shown that F2 colonises effectively the plant vascular tissues over a long period of time as it was assessed by F2 DNA levels. In parallel, qPCR analysis showed that the application of F2 reduced significantly the amount of V. dahliae DNA in the stem tissues compared to the control treatment.  相似文献   

12.
13.
Summary The occurrence of specific, high-affinity binding sites for a protein-lipopolysaccharide (PLP) phytotoxin purified from culture filtrates of a virulent Vertidllium dahliae isolate has been demonstrated in cotton protoplasts. Binding of the 125I-radiolabelled PLP-complex to protoplasts from cotyledon tissue was saturable and with an affinity (Kd = 17.3 nM) comparable with the concentration required for biological activity. A single class of binding site, accessible at the surface of the intact protoplasts, was found and the maximal number of binding sites were estimated as 2.41 × 10–16 moles per protoplast. The binding affinity to protoplasts proved near identical to that found with purified plasma membrane fractions from roots. When cultivars exhibiting resistance or susceptibility towards the pathogen were compared, no significant differences were found in the affinity of binding, but five times as many binding sites per protoplast and sixteen times as many binding sites per mg membrane protein were found in the resistant cultivar.Abbreviations PLP protein-lipopolysaccharide - kd dissociation constant - Bmax maximal number of binding sites - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

14.
Verticillium wilt (VW) is a widespread and serious potato (Solanum tuberosum) disease caused by the soilborne fungi Verticillium dahliae and V. albo-atrum. Breeding for VW resistance in potato is challenging due to ambiguous symptom expression, a lack of high throughput screening techniques, and variability in colonization by the fungus among and within plants. Genetic studies have identified major genes that confer resistance in diploid Solanum chacoense (V c ) and interspecific hybrids (V w and V t ). However, to date, these genes have not been used to develop molecular markers for the identification of resistant clones. Tomato Ve1 and Ve2 gene sequence information was used to amplify candidate Ve gene orthologs from both resistant and susceptible diploid potato hybrids. A CAPS marker was generated to track VW resistance in a backcross population segregating for resistance. The marker was also tested for its usefulness in other breeding lines. Our results indicate that this marker is effective for selection of the V w gene in segregating breeding populations.  相似文献   

15.
Summary Plantlets were regenerated from calli derived from leaf expiants of three genotypes of Solanum melongena (two parental genotypes and their hybrid). The cytological analysis showed that a) plants regenerated were all mixoploid, b) toxic medium (basal medium added with filtrate culture of Verticillium dahliae) was able to evidence karyotypic differences between genotypes not displayed by plants regenerated from callus grown on control medium, c) chromosomal mosaicism persists up to plant maturity and also in the selfed progeny. The results are discussed in terms of a selective process involving genes controlling chromosome number and/or a direct effect of toxic medium on the activity of the same genes.This research is supported by a grant from ERSO (Ente per la Ricerca e Sperimentazione in Ortoflorifrutticoltura e Sementi) — Regione Emilia Romagna  相似文献   

16.
17.
Previous studies have shown that the arbuscular mycorrhizal fungus (AMF) Glomus deserticola (Trappe, Bloss and Menge) can diminish the negative effect of Verticillium dahliae Kleb. on pepper yield. On the other hand, it is known that AMF can be more beneficial for plant growth and physiology under dry conditions than when soil moisture is plentiful. Therefore, our objective was to assess if a moderate water deficit imposed on pepper plants before their inoculation with V. dahliae could improve the effectiveness of G. deserticola as biocontrol agent. In the present experiment, the delay in disease development in Verticillium-inoculated plants associated with AMF did not occur under well watered conditions. In addition, the establishment of mycorrhizal symbiosis and the development of structures by AMF were delayed when both symbiotic and pathogenic fungi infected the same root. Therefore, it is suggested that the equilibrium between pepper plant, G. deserticola and V. dahliae is so complex that small changes in competition between symbiotic and pathogenic fungi for host resources can modify the efficiency of AMF as a biocontrol agent. On the other hand, water deficit enhanced the deleterious effect of V. dahliae on fruit set and yield only when pepper plants were not associated with G. deserticola, which reinforces the idea that AMF may be more important for host plants subjected to stressful conditions. However, comparing well watered non-mycorrhizal and predroughted mycorrhizal plants, we found that moderate water deficit imposed before inoculation with V. dahliae did not improve the effectiveness of G. deserticola as a biocontrol agent.  相似文献   

18.
The objective of this work was to study the influence of three Glomus species—Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, Glomus intraradices (Schenck and Smith) and Glomus deserticola (Trappe, Bloss, and Menge)—on the development of Verticillium-induced wilt in Capsicum annuum cv. Piquillo. Results showed that the effectiveness of arbuscular mycorrhizal fungi (AMF) as biocontrol agents varied among different Glomus species. In pepper colonized by G. intraradices the severity of the disease was even higher than that observed in non-mycorrhizal plants in terms of plant growth and pepper yield. On the other hand, the high effectiveness exhibited by G. mosseae in improving plant growth and the early beginning of the reproductive stage in these plants was not associated with great plant protection and high pepper yield in diseased plants. Only plants associated with G. deserticola had greater yield than non-mycorrhizal ones despite the lower P fertilization applied to the mycorrhizal treatment and this fact was observed in both healthy and diseased plants. It is suggested that the higher specific phosphorus uptake in Verticillium-inoculated plants associated with G. deserticola could contribute to diminish the deleterious effect of pathogen on yield. On the other hand, the possible influence of endogenous phenolics in roots on the tolerance or resistance of pepper against wilt induced by Verticillium dahliae remains unclear.  相似文献   

19.
Yuan HY  Yao LL  Jia ZQ  Li Y  Li YZ 《Protoplasma》2006,229(1):75-82
Summary. In plant cells, cytoskeletons play important roles in response to biotic and abiotic stresses. However, little is known about the dynamics of cytoskeletons when cells are attacked by unphysical stress factors such as elicitors and toxins. We report here that the toxin of Verticillium dahliae (VD toxin) induced changes of microfilaments (MFs) and microtubules (MTs) in Arabidopsis thaliana suspension-cultured cells. When cells were treated with a low concentration of VD toxin, MFs were disrupted ordinally from the cortex to the perinuclear region, and then recovered spontaneously; but the MTs persisted. The MFs in the perinuclear region showed more resistance to VD toxin than the cortical ones. In contrast, when cells were treated with a high concentration of VD toxin, MFs and MTs were disrupted sooner and more severely and did not recover spontaneously. Treatments with high concentrations of VD toxin also induced changes of nucleoli. At the early stages of treatment, a nucleus had a single ring-shaped nucleolus. At the later stages, multiple smaller and more brightly fluorescing nucleoli emerged in a single nucleus. Disrupted MFs could be recovered by removing the VD toxin before the ringshaped nucleoli appeared. All these results showed that MFs and MTs play important roles in the early defense responses against VD toxin in Arabidopsis suspension cells. The cytoskeletons may be used as sensors and effectors monitoring the defense reactions. The changes of nucleoli induced by VD toxin should be important characteristics of cell death. Correspondence and reprints: Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

20.
T. Fahima  Y. Henis 《Plant and Soil》1995,176(1):129-137
Quantitative aspects of the interaction between the antagonist Talaromyces flavus, the pathogen Verticillium dahliae and eggplant roots, were studied. When eggplant roots were inoculated with T. flavus, prior to the infection with the pathogen, the population density of T. flavus on V. dahliae-infected roots was at least 3 times higher than on healthy uninfected roots, and the proliferation of T. flavus on diseased eggplant roots was related to the severity of wilt symptoms, in the two levels of application of T. flavus studied. However, in all classes of disease severity tested (disease index, 0–3), the population density of T. Flavus on eggplant roots treated with 106 ascospores g–1 rooting mixture was significantly (p=0.05) higher than with 105 ascospores g–1. In roots treated with 105 and 106 T. flavus ascospores g–1 rooting mixture, the population density of V. dahliae was reduced by 51% and 69%, respectively. When testing the relationships between the population density of V. dahliae in the roots and disease severity, no significant (p=0.05) difference was found between disease indexes 2 and 3. However, the density of V. dahliae on roots of plants with disease index 1 was significantly (p=0.05) lower than disease indexes 2 and 3. The positive relationship between the inoculum concentration of V. dahliae and the population density of T. flavus developed on eggplant roots was significant (p=0.001), linear, and highly correlated (r=0.945) on a logarithmic scale. In addition, the analysis of these data revealed a significant (p=0.05), high, negative and linear correlation (r=–0.985) between the log concentration of V. dahliae inoculum and the disease reduction achieved by T. flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号