首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the role of the redox state regulator glutathione (GSH) in bacterial lipopolysaccharide (LPS)-induced anorexia we measured total reduced GSH (trGSH) in liver, serum and brain in response to intraperitoneal (ip) lipopolysaccharide (LPS, 4 microg/mouse) injection in LPS-na?ve and LPS-pretreated (4 microg/mouse given 3 days earlier) mice. LPS reduced food intake in LPS-na?ve mice and LPS pretreatment attenuated this effect. LPS decreased trGSH at 24 hours after injection in LPS-na?ve mice but 4 days later trGSH levels were upregulated in brain and liver, and this was associated with a significant attenuation of LPS-induced anorexia. In addition, LPS increased mitochondrial GSH levels in brain and liver at 4 days after injection. Pharmacological GSH depletion with diethylmaleate and L-buthionine sulfoximine in LPS-pretreated mice ablated the hyposensitivity to the anorexic effect of LPS. Together, these findings suggest a prominent role for GSH and its intracellular repartition in LPS anorexia.  相似文献   

2.
Obesity is associated with elevated levels of IL-6. High IL-6 is prognostic of mortality in sepsis, while controversial data link obesity to sepsis outcome. We used Lean and diet-induced obese (DIO) WT and IL-6 KO mice to investigate the interaction between obesity and IL-6 in endotoxemia. Circulating levels of IL-6 were significantly higher in WT DIO versus WT Lean mice receiving LPS (2.5 μg/mouse, ip). Obesity lead to greater weight loss in response to LPS, with IL-6 deficiency being partially protective. Plasma TNFα, IFNγ, Galectin-3 and leptin were significantly elevated in response to LPS and were each differentially affected by obesity and/or IL-6 deficiency. Plasma Galectin-1 and adiponectin were significantly suppressed by LPS, with obesity and IL-6 deficiency modulating the response. However, LPS comparably increased IL-10 levels in each group. Leukopenia with relative neutrophilia and thrombocytopenia developed in each group after injection of LPS, with obesity and genotype affecting the kinetics, but not the magnitude, of the response. Hepatic induction of the acute-phase protein SAA by LPS was not affected by obesity or IL-6 deficiency, although baseline levels were highest in WT DIO mice. Injection of LPS significantly increased hepatic mRNA expression of PAI-1 in Lean WT and Lean KO mice, while it suppressed the high baseline levels observed in the liver of DIO WT and DIO KO mice. Thus, both IL-6 and obesity modulate the response to endotoxemia, suggesting a complex interaction that needs to be considered when evaluating the effect of obesity on the outcome of septic patients.  相似文献   

3.
4.
Knockout of copper, zinc-superoxide dismutase (SOD1) and (or) cellular glutathione peroxidase (GPX1) has been reported to have dual impacts on coping with free radical-induced oxidative injury. Because bacterial endotoxin lipopolysaccharide (LPS) triggers inflammatory responses involving the release of cytokines, nitric oxide and superoxide in targeted organs such as liver, in this study we used SOD1 knockout (SOD1−/−), GPX1 knockout (GPX1−/−), GPX1 and SOD1 double-knockout (DKO) and their wild-type (WT) mice to investigate the role of these two antioxidant enzymes in LPS-induced oxidative injury in liver. Mice of the four genotypes (2 month old) were killed at 0, 3, 6 or 12 h after an i.p. injection of saline or 5 mg LPS/kg body weight. The LPS injection caused similar increase in plasma alanine aminotransferase among the four genotypes. Hepatic total glutathione (GSH) was decreased (P < 0.05) compared with the initial values by the LPS injection at all time points in the WT mice, but only at 6 and 12 h in the other three genotypes. The GSH level in the DKO mice was higher (P < 0.05) than in the WT at 6 h. Although the LPS injection resulted in substantial increases in plasma NO in a time-dependent manner in all genotypes, the NO level in the DKO mice was lower (P < 0.05) at 3, 6 and 12 h than in the WT. The level in the GPX1−/− and SOD1−/− mice was also lower (P < 0.05) than in the WT at 3 h. The LPS-mediated hepatic protein nitration was detected in the WT and GPX1−/− mice at 3, 6 or 12 h, but not in the SOD1−/−. In conclusion, knockout of SOD1 and (or) GPX1 did not potentiate the LPS-induced liver injury, but delayed the induced hepatic GSH depletion and plasma NO production.  相似文献   

5.
Lipopolysaccharide (LPS)-induced effects on energy balance are characterized by alterations in energy expenditure (hypermetabolism) and food intake (anorexia). To study the role of tumour necrosis factor alpha (TNF-alpha) on some of these metabolic responses to endotoxin, we have used transgenic mice expressing soluble tumour necrosis factor receptor-1 IgG fusion protein (TNFR1-IgG) as well as TNF-alpha knockout (KO), lymphotoxin-alpha (LT-alpha) KO, and interferon-gamma receptor (IFN-gamma R) KO mice. The results from TNFR1-IgG transgenic mice suggest that the hypermetabolic and anorectic responses induced by LPS are independently regulated since, in the absence of TNF-alpha or LT-alpha, the LPS-induced hypermetabolism is almost prevented but not the anorexia. The anorectic response shows the strongest association with IFN-gamma since both IFN-gamma R KO mice and mice treated with anti-IFN-gamma antibody showed marked reduction in the LPS-induced anorexia compared to other mice. IFN-gamma R KO mice also have an attenuated thermogenic response to endotoxin. Anti-Asialo GM1 antibody treatment attenuated both the hypermetabolic and anorectic responses to LPS, to an extent comparable to that observed in IFN-gamma R KO mice. This finding suggests that natural killer cells (lymphocytic subsets) may be involved in IFN-gamma production and play an important role in the metabolic alterations induced by LPS. We also showed that the hypermetabolic response of control mice is associated with an upregulation of cytokine expression within the brain and an increase in permeability of the blood brain barrier. LPS-induced anorexia appears to involve peripheral cytokine expression.  相似文献   

6.
7.
C3H/HeCr mice are more susceptible to infection compared with other strains. Lactoferrin (LF), a protein involved in innate defense, was shown to protect mice against lethal endotoxemia. In this investigation we attempt to explain the cause of increased susceptibility of C3H/HeCr mice to LPS and lack of protective LF action in these mice. We found that C3H/HeCr mice produced up to 5-fold more serum TNFalpha and 66% higher IFNgamma levels in response to i.v. LPS injection than the control, CBA strain. 24 h pretreatment of C3H/HeCr mice with LF did not cause inhibition of the LPS-induced TNFalpha serum levels, whereas in CBA mice LF significantly decreased TNFalpha level. IL-6 serum levels, in turn, were lowered in C3H/HeCr mice but elevated in CBA mice. That differential regulation of cytokine production by LF in C3H/HeCr mice paralleled a decreased survival after lethal LPS injection - 10% vs. 60% in control, PBS treated mice. In addition, determination of colony forming units (CFU) in livers and spleens after administration of 10(8) Escherichia coli revealed that pretreatment of CBA mice with LF caused a marked reduction of CFU in these organs, whereas in C3H/HeCr mice the changes were insignificant. These results indicate that the altered TNFalpha/IL-6 ratio in C3H/HeCr mice, as compared to control CBA mice, as well as the increased IFNgamma level, may be responsible for the increased susceptibility to endotoxemia in that substrain. We also suggest that an association exists between the LF protective effect against endotoxic sequelae and the insult-induced systemic immune response.  相似文献   

8.
9.
Free radicals and proinflammatory cytokines from phagocytes have been implicated in the pathogenesis of endotoxic shock, a disease with high mortality caused by Gram-negative bacterial endotoxin. In the present study, male BALB/c and Swiss mice received intraperitoneally lipopolysaccharide (LPS) at 100 mg/kg and 150 mg/kg, respectively, that led to a lethal endotoxic shock (100 % of mortality before 30 h). Swiss mice injected with 100 mg/kg, that did not show lethal endotoxic shock, were also studied. Peritoneal macrophages were obtained from animals at 2, 4, 12 or 24 h after injection of LPS or saline (control) solutions. Superoxide anion and tumor necrosis factor (TNFalpha) production were determined in these cells as well as other functions such as adherence capacity, chemotaxis and phagocytosis. The increase in superoxide anion production after endotoxin injection was higher in cells from mice with lethal shock than in those with non-lethal shock. However, the enhancement of TNFalpha production was similar in all cases, although in Swiss mice the highest levels of TNFalpha were observed at 1.5 h after endotoxin injection, while in BALB/c mice they occurred at 2 h after LPS injection. This oxidative stress was also revealed by the other functions analyzed, since adherence to substrate and phagocytosis were stimulated and chemotaxis was decreased after endotoxin injection as compared to controls, the differences being even more significant in animals with lethal shock. These data suggest that these changes, mainly the increased production of free radicals even more than the TNFalpha release, could be involved in mouse mortality caused by LPS.  相似文献   

10.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFalpha the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor kappaB (NF-kappaB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   

11.
Previously, the changes in phagocyte functions such as adherence, chemotaxis or TNFalpha production were found to be associated with oxidative stress in endotoxin-induced septic shock. However, in this type of oxidative stress the lymphocyte involvement has rarely been studied. In the present report, we analyzed the above functions in peritoneal lymphocytes from male and female BALB/c mice with a lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg), male and female Swiss mice with lethal endotoxic shock caused by intraperitoneal injection of LPS (150 and 250 mg/kg, respectively) or non-lethal endotoxic shock (100 mg/kg). In peritoneal lymphocytes obtained at 0, 2, 4, 12 or 24 h after LPS injection, the first two functions of these cells in the immune response, i.e. adherence to tissues and directed migration (chemotaxis), were studied. At 0, 0.5, 1, 1.5, 2, 4, 12 and 24 h after LPS injection, TNFalpha released by lymphocytes was also analyzed. The results show that endotoxic shock increases the adherence and TNFalpha release, and decreases the chemotaxis of peritoneal lymphocytes. These changes were more significant in mice with lethal than with non-lethal endotoxic shock, a fact that confirms the important role of lymphocytes during endotoxic shock.  相似文献   

12.
Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.  相似文献   

13.
Obesity is a risk factor for cardiovascular disease. C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine that is downregulated by obesity. We investigated the role of CTRP9 in cardiac injury with loss-of-function genetic manipulations and defined the receptor-mediated signaling pathway downstream of this adipokine. CTRP9-knockout (CTRP9-KO) mice at the age of 12 weeks were indistinguishable from wild-type (WT) mice under basal conditions. CTRP9-KO mice had exacerbated contractile left ventricle dysfunction following intraperitoneal injection of lipopolysaccharide (LPS) compared to WT mice. Administration of LPS to CTRP9-KO mice also resulted in increased expression of proinflammatory cytokines and oxidative stress markers in the heart compared to WT mice. Likewise, CTRP9-KO mice showed increased myocardial infarct size and elevated expression of inflammatory mediators in ischemic heart following ischemia and reperfusion compared to WT mice. Treatment of cardiac myocytes with CTRP9 protein led to suppression of LPS-induced expression of proinflammatory genes, which was reversed by blockade of AMPK or ablation of adiponectin receptor I (AdipoR1). Systemic delivery of CTRP9 attenuated LPS-induced cardiac dysfunction in WT mice but not in muscle-specific transgenic mice expressing dominant-negative mutant form of AMPK or in AdipoR1-knockout mice. CTRP9 protects against acute cardiac damage in response to pathological stimuli by suppressing inflammatory reactions through AdipoR1/AMPK-dependent mechanisms.  相似文献   

14.
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.  相似文献   

15.
Tumor necrosis factor (TNF)-alpha is a macrophage-derived proinflammatory cytokine implicated in hepatotoxicity. In the present studies, p55 TNF receptor 1 (TNFR1) -/- mice were used to assess the role of TNF-alpha in acetaminophen-induced antioxidant defense. Treatment of wild-type (WT) mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increased serum alanine transaminases. This was correlated with a rapid depletion of hepatic glutathione (GSH). Whereas in WT mice GSH levels returned to control after 6-12 h, in TNFR1-/- mice recovery was delayed for 48 h. Delayed induction of heme oxygenase-1 and reduced expression of CuZn superoxide dismutase were also observed in TNFR1-/- compared with WT mice. This was associated with exaggerated hepatotoxicity. In WT mice, acetaminophen caused a time-dependent increase in activator protein-1 nuclear binding activity and in c-Jun expression. This response was significantly attenuated in TNFR1-/- mice. Constitutive NF-kappaB binding activity was detectable in livers of both WT and TNFR1-/- mice. A transient decrease in this activity was observed 3 h after acetaminophen in WT mice, followed by an increase that was maximal after 6-12 h. In contrast, in TNFR1-/- mice, acetaminophen-induced decreases in NF-kappaB activity were prolonged and did not return to control levels for 24 h. These data indicate that TNF-alpha signaling through TNFR1 plays an important role in regulating the expression of antioxidants in this model. Reduced generation of antioxidants may contribute to the increased sensitivity of TNFR1-/- mice to acetaminophen.  相似文献   

16.
Phospholipid scramblase 1 (PLSCR1) is a member of PLSCR gene family that has been implicated in multiple cellular processes including movement of phospholipids, gene regulation, immuno-activation, and cell proliferation/apoptosis. In the present study, we identified PLSCR1 as a positive intracellular acute phase protein that is upregulated by LPS in liver, heart, and adipose tissue, but not skeletal muscle. LPS administration resulted in a marked increase in PLSCR1 mRNA and protein levels in the liver. This stimulation occurred rapidly (within 2 h), and was very sensitive to LPS (half-maximal response at 0.1 microg/mouse). Moreover, two other APR-inducers, zymosan and turpentine, also produced significant increases in PLSCR1 mRNA and protein levels, indicating that PLSCR1 was stimulated in a number of models of the APR. To determine signaling pathways by which LPS stimulated PLSCR1, we examined the effect of proinflammatory cytokines in vitro and in vivo. TNFalpha, IL-1beta, and IL-6 all stimulated PLSCR1 in cultured Hep B3 hepatocytes, whereas only TNFalpha stimulated PLSCR1 in cultured 3T3-L1 adipocytes, suggesting cell type-specific effects of cytokines. Furthermore, the LPS-stimulated increase in liver PLSCR1 mRNA was greatly attenuated by 80% in TNFalpha and IL-1beta receptor null mice as compared to wild-type controls. In contrast, PLSCR1 levels in adipose tissue were induced to a similar extent in TNFalpha and IL-1beta receptor null mice and controls. These results indicate that maximal stimulation of PLSCR1 by LPS in liver required TNFalpha and/or IL-1beta, whereas the stimulation of PLSCR1 in adipose tissue is not dependent on TNFalpha and/or IL-1beta. These data provide evidence that PLSCR1 is a positive intracellular acute phase protein with a tissue-specific mechanism for up-regulation.  相似文献   

17.
Alterations in regional brain concentration of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their metabolites were investigated in male BALB/c mice injected intraperitoneally with bacterial lipopolysaccharide (LPS, 2 mg kg(-1)) or recombinant murine tumor necrosis factor alpha (TNFalpha, 0.1 mg kg(-1)) at 2, 6, 12 and 24 h after the injection. At 2 h post-injection the LPS administration resulted in hypothermia, which was not apparent at later time points. No consistent effects were observed by either LPS or TNFalpha on peripheral leukocyte counts or plasma transaminase levels. Both LPS and TNFalpha slightly elevated NE metabolism in the striatum at 2-12 h. Concentrations of DA and its metabolites were significantly elevated only in the hypothalamus following TNFalpha at 24 h. Tumor necrosis factor alpha exerted pronounced effects on 5-HT metabolism in most brain regions at 2 h. Results suggest that the effect of LPS is more complex compared with TNFalpha because of the endogenous production of other cytokines including the TNFalpha.  相似文献   

18.
Changes in both central and peripheral thyroid hormone (TH) metabolism occur during illness. These changes, known collectively as non-thyroidal illness, are apparently mediated by the proinflammatory cytokines IL-6, TNFalpha and IFNgamma. IL-12 is involved in regulation of IFNgamma and TNFalpha. The aim of this study was to evaluate the role of IL-12 in TH metabolism during illness. We studied TH metabolism both centrally (in the pituitary) and peripherally (in the liver) in IL-12 knock-out (IL-12 (-/-)) and wild type (WT) mice during illness induced by administration of bacterial endotoxin (LPS). LPS induced a similar decrease in serum T (3), T (4) and liver 5'-DI mRNA expression in IL-12 (-/-) and WT mice with the exception of a smaller reduction of serum T (4) in IL-12 (-/-) mice. In the pituitary, the LPS-induced decline in 5'-DI activity in WT mice was not observed in IL-12 (-/-) mice (p < 0.001), whereas the decrease in DII activity tended to be smaller in IL-12 (-/-) mice (p = 0.066). The lower decrease in pituitary activity of both DI and DII in IL-12 (-/-) mice is possibly related to the lower LPS-induced T (4) decrease. In conclusion, IL-12 is involved in the central regulation of the HPT axis during illness but not in the peripheral regulation.  相似文献   

19.
A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.  相似文献   

20.
Febrile responses to bacterial pathogens are attenuated near term of pregnancy in several mammalian species. It is unknown, however, whether this reflects a fundamental physiological adaptation of female rats or whether it is specific to pregnancy. The aims of this study therefore were 1) to determine whether febrile responses to the bacterial endotoxin lipopolysaccharide (LPS) are attenuated in female vs. male rats and, if so, to identify possible mechanisms involved in modulating this and 2) to assess whether plasma concentrations of the anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), an important regulator of fever, are dependent on the physiological state of the female and could therefore be involved in modulating febrile responses. We found febrile responses were attenuated in cycling female vs. male rats and also in near-term pregnant dams vs. cycling females after intraperitoneal injection of LPS (0.05 mg/kg). Plasma levels of IL-1ra were significantly greater in female rats after injection of LPS, particularly during pregnancy, than in males. This was accompanied by attenuated levels of hypothalamic IL-1beta and cyclooxygenase-2 mRNA, two key mediators of the febrile response, in female rats. Furthermore, increasing plasma levels of IL-1ra in male rats by intraperitoneal administration of the recombinant antagonist attenuated hypothalamic mRNA levels of these mediators after LPS. These data suggest that there is a fundamental difference in febrile response to LPS between the genders that is likely regulated by IL-1ra. This may be an important mechanism that protects the developing fetus from potentially deleterious consequences of maternal fever during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号