首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

2.
To test the hypothesis that histidine 64 in carbonic anhydrase II has a crucial role as a 'proton shuttle group' during catalysis of CO2-HCO3- interconversion, this residue was replaced by lysine, glutamine, glutamic acid and alanine by site-directed mutagenesis. All these variants turned out to have high CO2 hydration activities. The kcat values at pH 8.8 and 25 degrees C were only reduced by 1.5-3.5-fold compared to the unmodified enzyme. These results show that intramolecular proton transfer via His 64 is not a dominating pathway in the catalytic reaction. The variants also catalyze the hydrolysis of 4-nitrophenyl acetate. The pKa values for the activity-controlling group are between 6.8 and 7.0 for all studied forms of the enzyme except the Glu 64 variant which shows a complex pH dependence with the major pKa shifted to 8.4.  相似文献   

3.
A library of sulfonamides/sulfamates has been investigated for the inhibition of the carboxyterminal truncated form of the alpha-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the gastric pathogen Helicobacter pylori (hpCA). This enzyme, incorporating 202 amino acid residues, showed a catalytic activity similar to that of the full length hpCA, with k(cat) of 2.35 x 10(5)s(-1) and k(cat)/K(M) of 1.56 x 10(7)M(-1)s(-1) at 25 degrees C and pH of 8.9, for the CO(2) hydration reaction. All types of activity for inhibition of the bacterial enzyme have been detected. Dorzolamide and simple 4-substituted benzenesulfonamides were weak hpCA inhibitors (inhibition constants, K(I)s, in the range of 830-4310 nM). Sulfanilamide, orthanilamide, some of their derivatives, and indisulam showed better activity (K(I)s in the range of 310-562 nM), whereas most of the clinically used CA inhibitors, such as methazolamide, ethoxzolamide, dichlorophenamide, brinzolamide, topiramate, zonisamide, etc., acted as medium potency hpCA inhibitors (K(I)s in the range of 124-287 nM). Some potent hpCA inhibitors were detected too (K(I)s in the range of 20-96 nM) such as acetazolamide, 4-amino-6-chloro-1,3-benzenedisulfonamide, 4-sulfanilyl-aminoethyl-benzenesulfonamide, and 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. Most of the investigated derivatives acted as better inhibitors of the human isoform hCA II than as hpCA inhibitors. Since hpCA is essential for the survival of the pathogen in acid, its inhibition by compounds such as those investigated here might be used as a new pharmacologic tool in the management of drug resistant H. pylori.  相似文献   

4.
The esterase, phosphatase, and sulfatase activities of carbonic anhydrase (CA, EC 4.2.1.1) isozymes, CA I, II, and XIII with 4-nitrophenyl esters as substrates was investigated. These enzymes show esterase activity with 4-nitrophenyl acetate as substrate, with second order rate constants in the range of 753-7706M(-1)s(-1), being less effective as phosphatases (k(cat)/K(M) in the range of 14.89-1374.40M(-1)s(-1)) and totally ineffective sulfatases. The esterase/phosphatase activities were inhibited by sulfonamide CA inhibitors, proving that the zinc-hydroxide mechanism responsible for the CO(2) hydrase activities of CAs is also responsible for their esterase/phosphatase activity. CA XIII was the most effective esterase and phosphatase. CA XIII might catalyze other physiological reactions than CO(2) hydration, based on its relevant phosphatase activity.  相似文献   

5.
The purification of red blood cell carbonic anhydrase (CA, EC 4.2.1.1) from ostrich (scCA) blood is reported, as well as an inhibition study of this enzyme with a series of aromatic and heterocylic sulfonamides. The ostrich enzyme showed a high activity, comparable to that of the human isozyme II, with kcat, of 1.2 x 10(6) s(-1) and kcat/KM of 1.8 x 10(7) M(-1)s(-1), and an inhibition profile quite different from that of the human red blood cell cytosolic isozymes hCA I and II. scCA has generally a lower affinity for sulfonamide inhibitors as compared to hCA I and II. The only sulfonamide which behaved as a very potent inhibitor of this enzyme was ethoxzolamide (KI = 3.9 nM) whereas acetazolamide and sulfanilamide behaved as weaker inhibitors (inhibition constants in the range 303-570 nM). Several other aromatic and heterocyclic sulfonamides, mostly derivatives of sulfanilamide, homosulfanilamide, 4-aminoethylbenzenesulfonamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide, showed good affinities for the ostrich enzyme, with KI values in the range 25-72 nM.  相似文献   

6.
The effect of the initial pH and the concentrations of thrombin, fibrinogen, and Ca2+ upon the rate of pH change associated with clotting of bovine fibrinogen by human thrombin was investigated at pH 6.80, 7.80, and 8.80, 0.3 ionic strength, 25 degrees C, and 19.5 mg/mL final fibrinogen concentration. At pH 6.80 and 7.80, the reaction was first order, with rate constant k1. At pH 8.80, a first-order reaction of the release of H+ (k1) was followed by a partial rebinding of these in a reaction consecutive to the first one (k2). At each of the above pH values, k1 was proportional to thrombin concentration in the 0.05-3.0 min-1 range investigated. The k1 constants were 0.111 +/- 0.001, 0.250 +/- 0.005, and 0.190 +/- 0.002 min-1 (NIH thrombin units)-1 mL-1 at pH 6.80, 7.80, and 8.80, respectively. Plots of log rate vs log thrombin concentration of these data were linear with slopes close to 1 at all three pH values. The rate of the second reaction (k2) was independent of both the thrombin and the initial fibrinogen concentration. The pH dependence of k1 exhibited a bell-shaped curve that could be resolved into the effect of one group with a pK of 7.27 that increased the rate and another with a pK of 9.22 that decreased the rate. With constant thrombin concentration but varying fibrinogen concentration, plots of 1/k1 vs [fibrinogen] were linear, but the lines did not pass through the origin. From the slope and intercept, kcat and KM of the Michaelis-Menten equation could be calculated. The same parameters were obtained also from initial velocity vs [fibrinogen] plots. Values of kcat were consistent and accurate; those of KM were more scattered. KM was (22.4-34.2) X 10(-6) M at pH 6.80 and approximately 7 X 10(-6) M in the pH 7.26-8.80 range. The latter value, pertaining to the release of H+ ions, is in agreement with values in the literature for KM of the release of fibrinopeptide A by thrombin in the 7.4-8.0 pH range. The value of kcat s-1 (unit of thrombin)-1 mL-1 increases from 1.2 X 10(-10) s-1 unit of thrombin-1 mL-1 at pH 6.80 to 2.46 X 10(-10) at pH 7.80 and then decreases to 2.01 X 10(-10) 10(-1) (units of thrombin)-1 mL-1 at pH 8.80. The kcat values are significantly lower than those in the literature for the release of fibrinopeptide A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Techniques for the immobilization of bovine carbonic anhydrase (BCA) on porous silica beads and graphite are presented. Surface coverage on porous silica beads was found to be 1.5 x 10(-5) mmol BCA/m(2), and on graphite it was 1.7 x 10(-3) mmol BCA/m(2) nominal surface area. Greater than 97% (silica support) and 85% (graphite support) enzyme activity was maintained upon storage of the immobilized enzyme for 50 days in pH 8 buffer at 4 degrees C. After 500 days storage, the porous silica bead immobilized enzyme exhibited over 70% activity. Operational stability of the enzyme on silica at 23 degrees C and pH 8 was found to be 50% after 30 days. Catalytic activity expressed as an apparent second-order rate constant K'(Enz) for the hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by BCA immobilized on silica beads and graphite at pH 8 and 25 degrees C is 2.6 x 10(2) and 5.6 x 10(2) M(-1)s(-1) respectively. The corresponding K(ENZ) value for the free enzyme is 9.1 x 10(2) M(-1)s(-1). Activity of the immobilized enzyme was found to vary with pH in such a manner that the active site pK, on the porous silica bead support is 6.75, and on graphite it is 7.41. Possible reasons for a microenvironmental influence on carbonic anhydrase pK(a), are discussed. Comparison with literature data shows that the enzyme surface coverage on silica beads reported here is superior to previously reported data on silica beads and polyacrylamide gels and is comparable to an organic matrix support. Shifts in BCA-active site pK(a) values with support material, a lack of pH dependent activity studies in the literature, and differing criteria for reporting enzyme activity complicate literature comparisons of activity; however, immobilized BCA reported here generally exhibits comparable or greater activity than previous reports for immobilized BCA.  相似文献   

8.
The unique secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4x10(5)s(-1) and k(cat)/K(M) of 4.9x10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as isoforms CA I or CA IX. A series of anions (such as bicarbonate, chloride, nitrate, etc.) were shown to inhibit the activity of the enzyme, with inhibition constants typically in the range of 0.60-0.90mM. The best hCA VI inhibitors were cyanide, azide, sulfamide, and sulfamate, with inhibition constants in the range of 70-90microM.  相似文献   

9.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K(m)(, kcat) and k(cat)/K(m) values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 microM, 2.13 s(-1), 3.5 x 10(4) M(-1) s(-1) and 71 microM, 2.13 s(-1), 3.0 x 10(4) M(-1) s(-1) respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25 degrees C.  相似文献   

10.
A single mutation, involving the replacement of an arginine residue with histidine to reconstruct a zinc-binding site, suffices to change a catalytically inactive murine carbonic anhydrase-related protein (CARP) to an active carbonic anhydrase with a CO2-hydration turnover number of 1.2 x 104 s-1. Further mutations, leading to a more 'carbonic anhydrase-like' active-site cavity, results in increased activity. A quintuple mutant having His94, Gln92, Val121, Val143, and Thr200 (human carbonic anhydrase I numbering system) shows kcat = 4 x 104 s-1 and kcat/Km = 2 x 107 M-1.s-1, greatly exceeding the corresponding values for carbonic anhydrase isozyme III and approaching those characterizing carbonic anhydrase I. In addition, a buffer change from 50 mM Taps/NaOH to 50 mM 1, 2-dimethylimidazole/H2SO4 at pH 9 results in a 14-fold increase in kcat for this quintuple mutant. The CO2-hydrating activity of a double mutant with His94 and Gln92 shows complex pH-dependence, but the other mutants investigated behave as if the activity (kcat/Km) is controlled by the basic form of a single group with pKa near 7.7. In a similar way to human carbonic anhydrase II, the buffer behaves formally as a second substrate in a ping-pong pattern, suggesting that proton transfer between a zinc-bound water molecule and buffer limits the maximal rate of catalysis in both systems at low buffer concentrations. However, the results of isotope-exchange kinetic studies suggest that proton shuttling via His64 is insignificant in the CARP mutant in contrast with carbonic anhydrase II. The replacement of Ile residues with Val in positions 121 or 143 results in measurable 4-nitrophenyl acetate hydrolase activity. The pH-rate profile for this activity has a similar shape to those of carbonic anhydrase I and II. CD spectra of the double mutant with His94 and Gln92 are variable, indicating an equilibrium between a compact form of the protein and a 'molten globule'-like form. The introduction of Thr200 seems to stabilize the protein.  相似文献   

11.
Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (beta-class) carbonic anhydrase in the archaea. The Methanobacterium thermoautotrophicum DeltaH cab gene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75 degrees C. No esterase activity was detected with p-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO(2) hydration activity with a k(cat) of 1.7 x 10(4) s(-1) and K(m) for CO(2) of 2.9 mM at pH 8.5 and 25 degrees C. Western blot analysis indicates that Cab (beta class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the gamma carbonic anhydrase from Methanosarcina thermophila was detected. These results show that beta-class carbonic anhydrases extend not only into the Archaea domain but also into the thermophilic prokaryotes.  相似文献   

12.
The zinc and cobalt forms of the prototypic gamma-carbonic anhydrase from Methanosarcina thermophila were characterized by extended X-ray absorption fine structure (EXAFS) and the kinetics were investigated using steady-state spectrophotometric and (18)O exchange equilibrium assays. EXAFS results indicate that cobalt isomorphously replaces zinc and that the metals coordinate three histidines and two or three water molecules. The efficiency of either Zn-Cam or Co-Cam for CO(2) hydration (k(cat)/K(m)) was severalfold greater than HCO(3-) dehydration at physiological pH values, a result consistent with the proposed physiological function for Cam during growth on acetate. For both Zn- and Co-Cam, the steady-state parameter k(cat) for CO(2) hydration was pH-dependent with a pK(a) of 6.5-6.8, whereas k(cat)/K(m) was dependent on two ionizations with pK(a) values of 6.7-6.9 and 8.2-8.4. The (18)O exchange assay also identified two ionizable groups in the pH profile of k(cat)/K(m) with apparent pK(a) values of 6.0 and 8.1. The steady-state parameter k(cat) (CO(2) hydration) is buffer-dependent in a saturable manner at pH 8. 2, and the kinetic analysis suggested a ping-pong mechanism in which buffer is the second substrate. The calculated rate constant for intermolecular proton transfer is 3 x 10(7) M(-1) s(-1). At saturating buffer concentrations and pH 8.5, k(cat) is 2.6-fold higher in H(2)O than in D(2)O, suggesting that an intramolecular proton transfer step is at least partially rate-determining. At high pH (pH > 8), k(cat)/K(m) is not dependent on buffer and no solvent hydrogen isotope effect was observed, consistent with a zinc hydroxide mechanism. Therefore, at high pH the catalytic mechanism of Cam appears to resemble that of human CAII, despite significant structural differences in the active sites of these two unrelated enzymes.  相似文献   

13.
Furanacryloyl-Phe-Gly-Gly has been shown to be a convenient substrate for angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). A detailed kinetic analysis of the hydrolysis of this substrate indicates normal Michaelis-Menten behavior with kcat = 19000 min-1 and KM = 3.0 x 10(-4) M determined at pH 7.5, 25 degrees C. The enzyme is inhibited by phosphate and activated by chloride; maximal activity is observed with 300 mM NaCl. In the absence of added zinc, activity is lost rapidly below pH 7.5 due to spontaneous dissociation of the metal, but in the presence of zinc, the enzyme remains fully active to about pH 6. The pH-rate profile indicates two groups on the enzyme with apparent pK values of 5.6 and 8.4. The substrate specificity of the enzyme has been examined in terms of the fundamental specificity quantity kcat/KM as well as the separate constants by using a series of furanacryloyl-tripeptides. The activity toward furanacryloyl-Phe-Gly-Gly has been compared with that toward the physiological substrates angiotensin I and bradykinin.  相似文献   

14.
A kinetic study of CO(2) hydration was carried out using the water-soluble zinc model complex with water-soluble nitrilotris(2-benzimidazolylmethyl-6-sulfonate) L1S, [L1SZn(OH(2))](-), mimicking the active site of carbonic anhydrase, in the presence and absence of anion inhibitors NCS(-) and Cl(-). The obtained rate constants k(cat) for CO(2) hydration were 5.9x10(2), 1. 7x10(3), and 3.1x10(3) M(-1) s(-1) at 5, 10, and 15 degrees C, respectively: the k(cat)=ca. 10(4) M(-1) s(-1) extrapolated towards 25 degrees C has been the largest among the reported k(cat) using zinc model complexes for carbonic anhydrase. It was also revealed that NCS(-), Cl(-) and acetazolamide play a role of inhibitors by the decrease of k(cat): 7x10(2) and 2x10(3) M(-1) s(-1) for NCS(-) and Cl(-) at 15 degrees C, respectively. The sequence of their magnitudes in k(cat) is Cl(-) approximately acetazolamide>NCS(-), where the sequence Cl(-)>NCS(-) is confirmed for native carbonic anhydrase. The difference of k(cat) or k(obs) between NCS(-) and Cl(-) resulted from that between the stability constants K(st)=2x10(3) for [L1SZn(NCS)](2-) and 1x10(2) M(-1) for [L1SZnCl](2-) in D(2)O: for water-insoluble tris(2-benzimidazolylmethyl)amine L1, K(st)=1.8x10(4) for [L1Zn(NCS)](2-) and 1.5x10(3) M(-1) for [L1ZnCl](2-)in CD(3)CN/D(2)O (50% v/v). The crystal structure of anion-binding zinc model complexes [L1Zn(OH(2))](0.5)[L1ZnCl](0.5) (ClO(4))(1.5) 1(0.5)2(0.5)(ClO(4))(1.5) was revealed by X-ray crystallography. The geometry around Zn(2+) in 1 and 2 was tetrahedrally coordinated by three benzimidazolyl nitrogen atoms and one oxygen atom of H(2)O, or Cl(-).  相似文献   

15.
We have determined the activation parameters of kcat and kcat/Km for the carbonic anhydrase II-catalyzed hydration of CO2. The enthalpy and entropy of activation for kcat is 7860 +/- 120 cal mol-1 and -3.99 +/- 0.42 cal mol-1 K-1, respectively, for the human enzyme. Results for the bovine enzyme were statistically indistinguishable from those of the human enzyme. The entropy of activation of kcat for the human enzyme was further decomposed into partially compensating electrostatic(es) (delta S*es = +15.1 cal mol-1 K-1) and nonelectrostatic(nes) (delta S*nes = -19.1 cal mol-1 K-1) terms. Computer simulations of a formal kinetic mechanism for carbonic anhydrase II-catalyzed CO2 hydration show that 82% of the temperature effect on kcat can be attributed to the temperature effect on the intramolecular proton transfer step. The reported activation parameters are consistent with a substantial enzyme or active site solvent conformational change in the transition state of the intramolecular proton transfer step, and is consistent with the mechanism of proton transfer proposed by Venkatasubban and Silverman (Venkatasubban, K. S., and Silverman, D. N. (1980) Biochemistry 19, 4984-4989).  相似文献   

16.
We have measured the pH dependence of kcat and kcat/Km for CO2 hydration catalyzed by both native Zn2+-and metallo-substituted Co2+-bovine carbonic anhydrase II in the absence of inhibitory ions. For the Zn2+-enzyme, the pKa values controlling kcat and kcat/Km profiles are similar, but for the Co2+-enzyme the values are about 0.6 pH units apart. Computer simulations of a metal-hydroxide mechanism of carbonic anhydrase suggest that the data for both native and Co2+-carbonic anhydrase can be accounted for by the same mechanism of action, if we postulate that the substitution of Co2+ for Zn2+ in the active site causes a separation of about 0.6 pH units in the pKa values of His-64 and the metal-bound water molecule. We have also measured the activation parameters for kcat and kcat/Km for Co2+-substituted carbonic anhydrase II-catalyzed CO2 hydration and have compared these values to those obtained previously for the native Zn2+-enzyme. For kcat and kcat/Km we obtain an enthalpy of activation of 4.4 +/- 0.6 and approximately 0 kcal mol-1, respectively. The corresponding entropies of activation are -18 +/- 2 and -27 +/- 2 cal mol-1 K-1.  相似文献   

17.
The secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified in a bacterial expression system. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4 x 10(5)s(-1) and k(cat)/K(M) of 4.9 x 10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as the ubiquitous isoform CA I or the transmembrane, tumor-associated isozyme CA IX. A series of amino acids and amines were shown to act as CA VI activators, with variable efficacies. l-His, l-Trp, and dopamine showed weak CA VI activating effects (K(A)s in the range of 21-42 microM), whereas d-His, d-Phe, l-DOPA, l-Trp, serotonin, and some pyridyl-alkylamines were better activators, with K(A)s in the range of 13-19 microM. The best CA VI activators were l-Phe, d-DOPA, l-Tyr, 4-amino-l-Phe, and histamine, with K(A)s in the range of 1.23-9.31 microM. All these activators enhance k(cat), having no effect on K(M), participating thus in the rate determining step in the catalytic cycle, the proton transfer reactions between the enzyme active site and the environment.  相似文献   

18.
An α-carbonic anhydrase (CA, EC 4.2.1.1) was purified and characterized kinetically from erythrocytes of the sturgeon Acipenser gueldenstaedti, an endangered species. The sturgeon enzyme (AgCA) showed kinetic parameters for the CO(2) hydration reaction comparable with those of the human erythrocytes enzyme hCA II, being a highly active enzyme, whereas its esterase activity with 4-nitrophenyl acetate as substrate was lower. Sulphonamide inhibitors (acetazolamide, sulphanilamide) strongly inhibited AgCA, whereas metal ions (Ag(+), Zn(2+), Cu(2+) and Co(2+)) were weak, millimolar inhibitors. Several widely used pesticides (2,4-dichlorophenol, dithiocarbamates, parathion and carbaryl) were also assayed as inhibitors of this enzyme. The dithiocarbamates were low micromolar AgCA inhibitors (IC(50) of 16-18 μM), whereas the other pesticides inhibited the enzyme with IC(50)s in the range of 102-398 μM. The wide use of dithiocarbamate pesticides may be one of the factors enhancing the vulnerability of this sturgeon species to pollutants.  相似文献   

19.
We have investigated the steady state and equilibrium kinetic properties of carbonic anhydrase from Neisseria gonorrhoeae (NGCA). Qualitatively, the enzyme shows the same kinetic behaviour as the well studied human carbonic anhydrase II (HCA II). This is reflected in the similar pH dependencies of the kinetic parameters for CO(2) hydration and the similar behaviour of the kinetics of (18)O exchange between CO(2) and water at chemical equilibrium. The pH profile of the turnover number, k(cat), can be described as a titration curve with an exceptionally high maximal value of 1.7 x 10(6) s(-1) at alkaline pH and a pK(a) of 7.2. At pH 9, k(cat) is buffer dependent in a saturable manner, suggesting a ping-pong mechanism with buffer as the second substrate. The ratio k(cat)/K(m) is dependent on two ionizations with pK(a) values of 6.4 and 8.2. However, an (18)O-exchange assay identified only one ionizable group in the pH profile of k(cat)/K(m) with an apparent pK(a) of 6.5. The results of a kinetic analysis of a His66-->Ala variant of the bacterial enzyme suggest that His66 in NGCA has the same function as a proton shuttle as His64 in HCA II. The kinetic defect in the mutant can partially be overcome by certain buffers, such as imidazole and 1,2-dimethylimidazole. The bacterial enzyme shows similar K(i) values for the inhibitors NCO(-), SCN(-) and N(3)(-) as HCA II, while CN(-) and the sulfonamide ethoxzolamide are considerably weaker inhibitors of the bacterial enzyme than of HCA II. The absorption spectra of the adducts of Co(II)-substituted NGCA with acetazolamide, NCO(-), SCN(-), CN(-) and N(3)(-) resemble the corresponding spectra obtained with human Co(II)-isozymes I and II. Measurements of guanidine hydrochloride (GdnHCl)-induced denaturation reveal a sensitivity of the CO(2) hydration activity to the reducing agent tris(2-carboxyethyl)phosphine (TCEP). However, the A(292)/A(260) ratio was not affected by the presence of TCEP, and a structural transition at 2.8--2.9 M GdnHCl was observed.  相似文献   

20.
Biphenyl dioxygenase (Bph Dox) catalyzes initial oxygenation in the bacterial biphenyl degradation pathway. Bph Dox in Pseudomonas pseudoalcaligenes KF707 is a Rieske type three-component enzyme in which a large subunit (encoded by the bphA1 gene) plays an important role in the substrate specificity of Bph Dox. Steady-state kinetic assays using purified enzyme components demonstrated that KF707 Bph Dox had a kcat/Km of 33.1 x 10(3) (M(-1) s(-1)) for biphenyl. Evolved 1072 Bph Dox generated by the process of DNA shuffling (Suenaga, H. et al., J. Bacteriol., 184, 3682-3688 (2002)) exhibited enhanced degradation activity not only for biphenyl (kcat/Km of 62.2 x 10(3) [M(-1) s(-1)]) but also for benzene and toluene, compounds that are rarely attacked by KF707 Bph Dox. These results suggest that evolved 1072 Bph Dox acquires higher affinities and catalytic efficiencies for various substrates than the original KF707 enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号