首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured human dermal fibroblasts suspended in a rapidly polymerizing collagen matrix produce a fibroblast-populated collagen lattice. With time, this lattice will undergo a reduction in size referred to as lattice contraction. During this process, two distinct cell populations develop. At the periphery of the lattice, highly oriented sheets of cells, morphologically identifiable as myofibroblasts, show cell-to-cell contacts and thick, actin-rich staining cytoplasmic stress fibers. It is proposed that these cells undergoing cell contraction produce a multicellular contractile unit which reorients the collagen fibrils associated with them. The cells in the central region, referred to as fibroblasts, are randomly oriented, with few cell-to-cell contacts and faintly staining actin cytoplasmic filaments. In contrast it is proposed that cells working as single units use cell locomotion forces to reorient the collagen fibrils associated with them. Using this model, we sought to determine which of these two mechanisms, cell contraction or cell locomotion, is responsible for the force that contracts collagen lattices. Our experiments showed that fibroblasts produce this contractile force, and that the mechanism for lattice contraction appears to be related to cell locomotion. This is in contrast to a myofibroblast; where the mechanism for contraction is based upon cell contractions. Fibroblasts attempting to move within the collagen matrix reorganize the surrounding collagen fibrils; when these collagen fibrils can be organized no further and cell-to-cell contacts develop, which occurs at the periphery of the lattice first, these cells can no longer participate in the dynamic aspects of lattice contraction.  相似文献   

2.
Both rat derived vascular smooth muscle cells (SMC) and human myofibroblasts contain α smooth muscle actin (SMA), but they utilize different mechanisms to contract populated collagen lattices (PCLs). The difference is in how the cells generate the force that contracts the lattices. Human dermal fibroblasts transform into myofibroblasts, expressing α‐SMA within stress fibers, when cultured in lattices that remain attached to the surface of a tissue culture dish. When attached lattices are populated with rat derived vascular SMC, the cells retain their vascular SMC phenotype. Comparing the contraction of attached PCLs when they are released from the culture dish on day 4 shows that lattices populated with rat vascular SMC contract less than those populated with human myofibroblast. PCL contraction was evaluated in the presence of vanadate and genistein, which modify protein tyrosine phosphorylation, and ML‐7 and Y‐27632, which modify myosin ATPase activity. Genistein and ML‐7 had no affect upon either myofibroblast or vascular SMC‐PCL contraction, demonstrating that neither protein tyrosine kinase nor myosin light chain kinase was involved. Vanadate inhibited myofibroblast‐PCL contraction, consistent with a role for protein tyrosine phosphatase activity with myofibroblast‐generated forces. Y‐27632 inhibited both SMC and myofibroblast PCL contraction, consistent with a central role of myosin light chain phosphatase. J. Cell. Biochem. 111: 362–369, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Fibroblast populated collagen lattices (FPCL) have facilitated the in vitro study of wound contraction and scar contracture. Mixing fibroblasts, serum containing culture medium and soluble collagen, together and then incubating the mixture at 37 degrees C produces a FPCL. The fibroblasts elongate and spread within the collagen matrix, and by forces associated with cell locomotion they reorganize the collagen fibers. The reorganization of the collagen produces a reduction in size of the FPCL, called lattice contraction. It was also found that dialyzed fetal bovine serum did not support lattice contraction. Supplementing dialyzed serum with fatty acids accelerated lattice contraction. The fatty acid composition of the fibroblast plasma membrane influences that membrane fluidity. These studies demonstrated that lattice contraction was enhanced by the additions of saturated fatty acids in the order of laurate (C-12), palmitic (C-16), and stearate (C-18). With unsaturated fatty acids additions, the order of enhanced lattice contraction was arachidonate (4 C = C), linoleate (2 C = C) and oleate (1 C = C). The addition of dialyzed serum with or without fatty acids neither altered ATP-induced cell contraction activity nor cell proliferation. It was concluded that free fatty acid additions do not modulate FPCL contraction by enhancing microfilaments contraction or increasing cell numbers. The mechanism of action was proposed to be by altering cell membrane fluidity. This finding further supports the theory that the mechanism for lattice contraction is cell locomotion, rather than cell contraction.  相似文献   

4.
Intestinal smooth muscle cells (SMC) produce the fibrotic tissue, strictures, that characterize Crohn's disease. These SMC change their phenotype from a contractile muscle form to an inflammation-responsive form that migrates and synthesizes a collagen matrix. It is postulated that the inflammatory responsive SMC form associates differently with its surrounding collagen matrix compared to the normal SMC form. SMC derived from Crohn's diseased and uninvolved bowel were sustained in cell culture. Cultured SMC incorporated in collagen lattices have the capacity to reduce the size of that lattice, referred to as lattice contraction. At day 2, Crohn's SMC-populated collagen lattices were reduced to 21% of their initial area, while non-Crohn's SMC collagen lattices were reduced to 8%. Crohn's SMC demonstrate retarded lattice contraction compared to non-Crohn's SMC. When grown in monolayer culture, Crohn's-derived SMC cover 30% more area than non-Crohn's SMC. By Western blot analysis Crohn's SMC express more gelsolin, an actin-binding protein found elevated in cells exhibiting increased cell motility. Was the increased expression of gelsolin related to retarded collagen lattice contraction? Intracellular levels of gelsolin were elevated by the electroporation of plasma gelsolin protein into suspended non-Crohn's SMC. When incorporated in collagen lattices, gelsolin loaded cells showed retarded lattice contraction compared to SMC loaded with albumin. Crohn's SMC show increased expression of gelsolin, which may be associated with a diminished capacity to reorganize collagen fiber bundles. It is suggested that increased concentrations of gelsolin in Crohn's SMC is consistent with enhanced cell migration as a consequence of the inflammatory state of Crohn's diseased intestine.  相似文献   

5.
Fibroblasts were derived from dermis and scar of a 47-year-old white man with a recurrent incisional hernia as a result of fractured ribs. The scar was thin and stretched, suggesting a defect in the maturation of granulation tissue. After surgical repair, biopsy specimens of discarded scar and skin were used to generate fibroblast cell lines. Fibroblasts maintained in medium containing 10% fetal bovine serum and antibiotic were studied between their third and eighth passage. By phase contrast microscopy, no structural differences were obvious, but it was noted that to pass scar fibroblasts, a more aggressive trypsin regimen was required. Immunohistologic and Western blot analysis of patient scar fibroblasts showed (1) more a smooth muscle actin within stress fibers, (2) increased expression of the vitronectin integrin receptor alpha(v) (CD 51), and (3) reduced expression of the collagen integrin receptor alpha2 (CD 49b). The expression of vinculin from focal adhesions or a tubulin from microtubules was the same among cell lines. Contractions of scar and dermal fibroblast-populated collagen lattice were compared. At 24 hours, contractions were 69 percent with newborn fibroblasts (normal); 68 percent for patient dermal fibroblasts; and only 48 percent for patient scar fibroblasts. The retarded contraction of scar fibroblast-populated collagen lattice was significant (p > or = 0.002). Myosin ATPase activity, critical for lattice contraction, and cell migration were equivalent among all cell lines. A plausible mechanism for the retardation of scar lattice contraction is disruption of fibroblasts and collagen interactions, for which the attachment of cells to collagen is altered. It is proposed that either the decrease in the expression of collagen integrin receptor alpha2 (CD 49b), an increase in the expression of the vitronectin receptor alpha(v) (CD 51), or a combination of both is responsible for disruption of collagen fibroblast interactions.  相似文献   

6.
Cultured dermal fibroblasts become notably elongated when incorporated into a fibroblast-populated collagen lattice (FPCL). With time these fibroblasts reorganize the collagen responsible for reduction in lattice size. In monolayer the microinjection of Lucifer Yellow (LY) into cultured human fibroblasts shows cell coupling through gap junctions. Human fibroblasts residing on the periphery of a FPCL are at high density and the microinjection of LY into one of those fibroblasts demonstrates cell coupling. Cells within the center of an FPCL are at low density and appear to be independent of one another; however, the microinjection of LY into selected fibroblasts again demonstrates cell coupling. Hence the microinjection of cells in both the center and the edge of a FPCL pass dye to numerous neighbors. Does cell coupling influence FPCL contraction? FPCL incubated with heptanol and octanol, aliphatic alcohols that uncouple cells, inhibits lattice contraction, whereas hexanol, an aliphatic alcohol that does not uncouple cells, did not alter lattice contraction. Fibroblasts derived from connexin 43 (a transmembrane protein responsible for gap junction structures) knockout mice were demonstrated to lack gap junctional communications. When incorporated into a FPCL these cells failed to elongate and demonstrated retarded lattice contraction. Hence, gap junctional communications between fibroblasts incorporated into collagen lattices appear to optimize FPCL contraction and suggest a role for gap junctions in the organization of collagen fibers.  相似文献   

7.
Human dermal fibroblasts suspended in a collagen matrix exhibit a 4-day delay in cell division, while the same cells in monolayer divided by day 1. The initial rates of 3H-thymidine incorporation by cells in monolayer or suspended in collagen were not significantly different. When suspended in collagen, there was a threefold increase in the proportion of cells in a tetraploidal (4N) DNA state compared to the same cells in monolayer. Flow cytometry analysis and 3H-thymidine incorporation studies identified the delay of cell division as a consequence of a block in the G2/M of the cell cycle and not an inhibition of DNA synthesis. The inclusion of 150 μ/ml of hyaluronic acid (HA) in the manufacture of fibroblast populated collagen lattices (FPCL) caused a stimulation of cell division, as determined by cell counting; increased the expression of tubulin, as determined by Western blot analysis; and reduced the proportion of cells in a 4N state, as determined by flow cytometry. HA added to the same cells growing in monolayer produced a minimal increase in the rate of cell division or DNA synthesis. HA supplementation of FPCLs stimulated cell division as well as tubulin concentrations, but it did not enhance lattice contraction. The introduction of tubulin isolated from pig brain or purchased tubulin into fibroblasts by electroporation prior to their transfer into collagen lattices promoted cell division in the first 24 hours and enhanced FPCL contraction. It is proposed that tubulin protein, the building blocks of microtubules, is limited in human fibroblasts residing within a collagen matrix. When human fibroblasts are suspended in collagen, one effect of added HA may be to stimulate the synthesis of tubulin which assists cells through the cell cycle. J. Cell. Physiol. 177:465–473, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
We compared the proliferation of bovine aortic cells grown in collagen lattices. Smooth muscle cells continued to divide for 2 weeks while adventitial fibroblasts ceased to divide after 4-5 days. Endothelial cells did not proliferate within an untreated collagen lattice; however, if the lattice was covered with culture medium, endothelial cells populated its surface and proliferated to form a monolayer. We also found that both smooth muscle cells and endothelial cells, like fibroblasts, are able to contract a collagen lattice to a small fraction of its original volume, although endothelial cells are able to do so only if the lattice is covered with culture medium.  相似文献   

9.
Usually mast cells (MCs) modulate other cellular activities through the release of their cytoplasmic granules. Recently, gap junctional intercellular communication (GJIC) between an established human MC cell line (HMC-1) co-cultured with human dermal fibroblasts in fibroblast populated collagen lattices (FPCLs), enhanced the rate and degree of FPCL contraction. However, HMC-1 cells were unable to generate GJIC with human neonatal fibroblasts in monolayer culture. Here freshly isolated rat peritoneal MCs are co-cultured with fibroblasts in collagen lattices and in monolayer culture in vitro and introduced into rat polyvinyl alcohol (PVA) sponge implants in vivo. Co-cultured MC-FPCL contracted faster and to a greater degree. Loading Calcein AM green fluorescent dye into red fluorescent Dil tagged MC generates MC-paratroopers. When MC-paratroopers form GJIC with fibroblasts, some green dye is passed into the fibroblast, while the MC-paratrooper retains both its red and green fluorescence. MC-paratroopers passed green fluorescent dye into both human and rat dermal fibroblasts in monolayer culture. In rats 7-day-old subcutaneous PVA sponge implants, which received an injection of MC-paratroopers, exhibited auto-fluorescent green fibroblasts, when harvested 24 h later. MC-paratroopers pretreated with a long-acting GJIC inhibitor prior to their introduction into PVA sponge implants, failed to pass dye into fibroblasts. It is proposed that GJIC between granulation tissue fibroblasts and MCs can modulate some aspects of wound repair and fibrosis.  相似文献   

10.
Previous research suggested the possibility that contraction of floating collagen matrices by human fibroblasts required increased myosin light chain (MLC) phosphorylation. In the current studies, we show that increased MLC phosphorylation was neither necessary for platelet-derived growth factor (PDGF)-dependent matrix contraction nor sufficient for lysophosphatidic acid (LPA)-dependent contraction. In contrast, increased MLC phosphorylation did appear to be coupled to the formation of stress fibers by cells spreading in monolayer culture. Signal transduction pathways required for PDGF- and LPA-dependent matrix contraction involved phosphatidylinositol 3-kinase and the G(i) class of heterotrimeric G proteins, respectively. Our results indicate that PDGF- and LPA-dependent contraction of floating collagen matrices can be uncoupled from an increase in MLC phosphorylation.  相似文献   

11.
Myofibroblasts of wound granulation tissue, in contrast to dermal fibroblasts, join stress fibers at sites of cadherin-type intercellular adherens junctions (AJs). However, the function of myofibroblast AJs, their molecular composition, and the mechanisms of their formation are largely unknown. We demonstrate that fibroblasts change cadherin expression from N-cadherin in early wounds to OB-cadherin in contractile wounds, populated with alpha-smooth muscle actin (alpha-SMA)-positive myofibroblasts. A similar shift occurs during myofibroblast differentiation in culture and seems to be responsible for the homotypic segregation of alpha-SMA-positive and -negative fibroblasts in suspension. AJs of plated myofibroblasts are reinforced by alpha-SMA-mediated contractile activity, resulting in high mechanical resistance as demonstrated by subjecting cell pairs to hydrodynamic forces in a flow chamber. A peptide that inhibits alpha-SMA-mediated contractile force causes the reorganization of large stripe-like AJs to belt-like contacts as shown for enhanced green fluorescent protein-alpha-catenin-transfected cells and is associated with a reduced mechanical resistance. Anti-OB-cadherin but not anti-N-cadherin peptides reduce the contraction of myofibroblast-populated collagen gels, suggesting that AJs are instrumental for myofibroblast contractile activity.  相似文献   

12.
Human skin fibroblasts from three different Down's syndrome patients (trisomy 21) of very different ages have been tested for their adhesion responses on tissue culture substrata coated with type I collagen, fibronectin (FN), and their combination after or during treatment of cells with cycloheximide to evaluate limitations in specific responses. It was shown previously that in vitro-aged papillary and reticular dermal fibroblasts from normal individuals do not generate F-actin stress fibers when pretreated with cycloheximide on collagen substrata but do so on FN substrata, a deficiency linked to limiting amounts/function of collagen-specific receptors in aging cells. In these studies, all three Down's fibroblast populations demonstrated a similar deficiency in stress fiber formation, evaluated by rhodamine-phalloidin staining, upon cycloheximide treatment at all passage levels. They remained competent for stress fiber formation on FN substrata and for reorganization of microtubule and intermediate filament networks on all substrata, demonstrating the specificity for the collagen matrix and for the F-actin cytoskeleton in this deficiency. The cycloheximide-induced deficiency could be readily reversed in all three cell populations by further incubation of cells in drug-free medium and, in some cases, by prior growth of cells in ascorbate-supplemented medium to stimulate collagen and possibly collagen receptor production. However, several pieces of evidence indicate that reduced amounts of FN and collagen synthesized by fibroblasts do not contribute to the cycloheximide-induced deficiency, including the inability to reverse the effect by treatment of cells with TGF beta. Several conclusions are suggested from these studies: (a) Down's dermal fibroblasts become deficient in collagen-specific receptor(s) upon cycloheximide treatment, which leads to altered transmembrane signaling and inability to reorganize F-actin into stress fibers; (b) Down's dermal fibroblasts at all passage levels have matrix adhesive phenotypes similar to those of aging fibroblasts from normal individuals; and (c) these studies provide further support for cells from Down's patients as a genetic model of aging in normal populations.  相似文献   

13.
Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.  相似文献   

14.
Vascular smooth muscle cells (SMCs) undergo morphological and phenotypic changes when cultured in vitro. To investigate whether SMC morphology regulates SMC functions, bovine aortic SMCs were grown on micropatterned collagen strips (50-, 30-, and 20-microm wide). The cell shape index and proliferation rate of SMCs on 30- and 20-microm strips were significantly lower than those on non-patterned collagen (control), and the spreading area was decreased only for cells patterned on the 20-microm strips, suggesting that SMC proliferation is dependent on cell shape index. The formation of actin stress fibers and the expression of alpha-actin were decreased in SMCs on the 20- and 30-microm collagen strips. SMCs cultured on micropatterned biomaterial poly-(D,L-lactide-co-glycolide) (PLGA) with 30-microm wide grooves also showed lower proliferation rate and less stress fibers than SMCs on non-patterned PLGA. Our findings suggest that micropatterned matrix proteins and topography can be used to control SMC morphology and that elongated cell morphology decreases SMC proliferation but is not sufficient to promote contractile phenotype.  相似文献   

15.
Contraction of 3D collagen matrices by fibroblasts frequently is used as an in vitro model of wound closure. Different iterations of the model – all conventionally referred to as “contraction” – involve different morphological patterns. During floating matrix contraction, cells initially are round without stress fibers and subsequently undergo spreading. During stressed matrix contraction, cells initially are spread with stress fibers and subsequently undergo shortening. In the current studies, we used siRNA silencing of myosin IIA (MyoIIA) and myosin IIB (MyoIIB) to test the roles of myosin II isoforms in fibroblast interactions with 3D collagen matrices and collagen matrix contraction. We found that MyoIIA but not MyoIIB was required for cellular global inward contractile force, formation of actin stress fibers, and morphogenic cell clustering. Stressed matrix contraction required MyoIIA but not MyoIIB. Either MyoIIA or MyoIIB was sufficient for floating matrix contraction (FMC) stimulated by platelet-derived growth factor. Neither MyoIIA or MyoIIB was necessary for FMC stimulated by serum. Our findings suggest that myosin II-dependent motor mechanisms for collagen translocation during extracellular matrix remodeling differ depending on cell tension and growth factor stimulation.  相似文献   

16.
Mixing feed fibroblasts with soluble collagen and serum-supplemented culture medium at 37 degrees C results in the entrapment of cells within the polymerizing collagen matrix. This cellular-collagen complex is referred to as a fibroblast-populated collagen lattice (FPCL). In time, this FPCL undergoes a reduction in size called lattice contraction. The proposed mechanism for lattice contraction is cellular force produced by cytoplasmic microfilaments which organize collagen fibrils compacting the matrix. When the regulatory subunits of myosin, myosin light chains, are phosphorylated by myosin light chain kinase (MLCK), myosin ATPase activity is increased and actin-myosin dynamic filament sliding occurs. Elevated levels of myosin ATPase are required for maximal lattice contraction. Cholera toxin inhibits lattice contraction by increasing intracellular levels of cAMP. It is proposed that increased cytoplasmic concentrations of cAMP promote phosphorylation of MLCK, the enzyme important for maximizing myosin ATPase activity. Phosphorylating MLCK in vitro inhibits activity by decreasing its sensitivity to calcium-calmodulin complex. A decrease in MLCK activity would result in lower levels of myosin ATPase activity. MLCK, purified from turkey gizzard, was subjected to limited proteolytic digestion to produce calmodulin-independent-MLCK. The partially digested kinase does not require calcium-calmodulin for activation. Independent-MLCK is not subject to inhibition by phosphorylation. The electroporetic inoculation of independent-MLCK into fibroblasts before FPCL manufacture produced enhanced lattice contraction. Lattice contraction, in the presence of cholera toxin, was restored to normal levels by the prior electroporetic introduction of independent-MLCK. These findings support the hypothesis that increases in cAMP hinder lattice contraction by a mechanism involving inhibition of MLCK and myosin ATPase.  相似文献   

17.
The contraction of collagen matrices by dermal fibroblasts   总被引:4,自引:0,他引:4  
Floating collagen gel cultures containing human foreskin fibroblasts have been observed to undergo a rapid contraction process. The initial rate of contraction (i.e., within the first 2 hr) was observed to be a linear function of cell number within the concentration range of 10(5)-10(6) cells/gel. Observation of thick, deresined sections of such contracting gels in the SEM, as well as observation of thin sections in the TEM, suggest that the fibroblasts exert a tension upon the surrounding collagen fibers. These observations further indicate that the fibroblasts migrate from the interior regions of the gel matrix and eventually form a monolayer of cells encapsulating the contracted collagen disc. These observations are discussed in terms of the possible mechanisms involved in gel contraction.  相似文献   

18.
Adult pig smooth muscle cells (SMC) were isolated from the aortic media by collagenase digestion, subcultured as monolayer, and then re-integrated into a three-dimensional network of type I collagen. The contractile state characteristic for resident arterial wall SMC changed to the synthetic, fibroblast-like state. The cells reorganized the randomly orientated collagen fibrils causing the lattice to shrink. The influence of the extracellular matrix on the ultrastructure, the proliferation, and the collagen synthesis of these SMC embedded in the collagen lattice was investigated and compared to cells cultured in monolayer. The amount of total protein and collagens synthesized by SMC embedded in lattices was lowered as compared to monolayer cultures. Whereas total protein synthesis decreased continuously during the culture period, the proportion of collagen synthesis remained at a constant level. Although cells proliferated in lattices, proliferation was clearly slowed down as compared to monolayer cultures. The ultrastructure of entrapped synthetic state SMC was comparable to that of monolayer-cultured cells. Their cytoplasm was largely filled by elements of the endoplasmic reticulum, Golgi complexes and abundant mitochondria. With prolonged culture time, electron-dense granules as well as bodies containing whorled membranes could be found in the cytoplasm. These results indicate that synthetic state SMC can exhibit differential biosynthetic activity dependent on the actual matrix environment; cells seem to be able to sense the macromolecular composition of the extracellular matrix and to modify their production of matrix components accordingly.  相似文献   

19.
Human dermal fibroblasts (both papillary and reticular) were tested during in vivo or in vitro aging for their responses on collagen and/or fibronectin (FN) substrata, as well as on topologically mixed substrata. Cycloheximide treatments were used to evaluate whether receptors to these matrix molecules, mediating F-actin reorganization into stress fibers, are altered during aging processes. Late-passage (but not mid-passage) papillary and reticular cells from both an elderly male and a newborn infant spread effectively on collagen +/- FN but failed to generate stress fibers after lengthy pretreatment of cells with cycloheximide. In contrast, treatment with cycloheximide only when cells were reattaching was not inhibitory. None of the treatments had any effect on stress fiber formation of cells on FN-only substrata, demonstrating that drug sensitivity was specific for collagen responses. The inhibition could be reversed by rinsing cycloheximide out of cultures and could be prevented by prior growth of cells in ascorbate-supplemented medium to stimulate production/maturation of collagen and possibly collagen-specific receptors. Adjacent regions of coverslips were adsorbed with collagen and a proteolytic fragment of plasma FN lacking the collagen-binding domain but retaining other binding domains; cells bridging the interface were of special interest. When fragment F155 containing both the RGDS cell-binding and the heparin II-binding domains was tested in this paradigm, cells generated stress fibers continuous from the collagen-facing side into the F155-facing side of the same cell, consistent with the compatability of both collagen and FN receptors in generating the same stress fiber. However, F110 lacking the heparin II domain was incapable of facilitating stress fiber formation; fibers formed effectively on the collagen side and terminated abruptly at the collagen:F110 interface. These experiments demonstrate stringent regulation of where stress fibers begin, span, and terminate in the cytoplasm by matrix receptors at the cell's undersurface and establish that there are alterations of collagen-specific receptors as a consequence of in vitro aging, but not of in vivo aging, in both papillary and reticular human dermal fibroblasts.  相似文献   

20.
Ascorbic acid has been shown to stimulate collagen synthesis in monolayer cultures of human dermal fibroblasts. In the present studies, we examined whether the presence of a collagen matrix influences this response of dermal fibroblasts to ascorbic acid. Fibroblasts and collagen were mixed and allowed to gel and contract for 6 days to form a matrix prior to determining the concentration and time dependence for ascorbic acid to affect collagen synthesis by fibroblasts within the matrix. Collagen synthesis was stimulated at levels at or above 10 μM ascorbic acid and was maximal after 2 days of treatment. This concentration and time dependence is similar to that of cells grown in monolayer cultures. The effects of transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) were also examined in this model. TGF-β increased and FGF inhibited collagen synthesis in the gels, as has been shown for cells in monolayer cultures. The effects of potential inhibitors of lipid peroxidation induced by ascorbic acid were also examined in these matrices and compared to previous results obtained in monolayer cultures. Propyl gallate, cobalt chloride, α,α-dipyridyl, and α-tocopherol inhibited the ascorbic acid-mediated stimulation of collagen synthesis while mannitol had no effect. Natural retinoids inhibited total protein synthesis without the specific effect on collagen synthesis that was seen in monolayer cultures. These results indicate that ascorbic acid stimulates collagen synthesis in fibroblasts grown in a collagen matrix in a manner similar to that found in monolayer cultures. In contracting collagen gels, however, the magnitude of the effect is less and retinoids do not specifically inhibit collagen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号