首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.  相似文献   

2.
The effect of N alpha-tosyl-L-lysine chloromethylketone (TLCK), an inhibitor of trypsin-type proteases, on luteinizing hormone (LH)-induced and spontaneous meiotic maturation and follicular production of cAMP in mice was determined. When follicle-enclosed mouse oocytes were incubated with LH (1 micron/ml), they underwent the breakdown of the germinal vesicle (GVBD). TLCK (0.02-0.5 mM) inhibited LH-induced GVBD in folliculated oocytes. The concentration (0.5 mM) of TLCK that inhibited LH-induced GVBD did not significantly suppress LH-induced cAMP production by follicle cells. The effect of TLCK on spontaneous maturation in cumulus cell-enclosed and denuded oocytes was also determined. TLCK strongly inhibited spontaneous maturation in denuded oocytes only if it was added to the incubation medium for 1-3 h before oocytes were liberated from the follicular tissue. The inhibition of oocyte maturation by TLCK was significantly greater in cumulus cell-enclosed oocytes than in denuded oocytes, either with or without preincubation with TLCK. These results suggest that trypsin-type protease in oocytes participates in the process of meiotic maturation in mouse oocytes.  相似文献   

3.
We have developed an assay that can detect relative changes in the amount of a non-cAMP inhibitor of maturation present in cumulus cells (Eppig et al., 1983, Dev. Biol., 100:39-49). Using this assay in which accelerated maturation of a group of treated cumulus cell-oocyte complexes relative to untreated complexes indicates a decrease in the amount of inhibitor, results of the experiments described here suggest a possible relationship between elevation of cAMP levels and subsequent decreased amounts of a non-cAMP inhibitor. Mouse oocytes obtained from cumulus cell-oocyte complexes treated with luteinizing hormone (LH) resumed meiosis prior to oocytes obtained from untreated complexes; the degree of acceleration of maturation was dependent on LH concentration. A similar result was obtained with follicle-stimulating hormone (FSH). Correlated with LH- or FSH-acceleration of maturation was an LH- or FSH-induced elevation of cumulus cell cAMP levels. Inhibiting LH-induced elevation of cumulus cell cAMP levels inhibited LH-induced acceleration of maturation. An initial incubation of complexes in medium containing dibutyryl cAMP (dbcAMP) also promoted acceleration of maturation. In contrast, maturation of denuded oocytes was not altered by treatment with either LH, FSH, or dbcAMP. Complexes initially incubated in dbcAMP-containing medium still demonstrated acceleration of maturation after a subsequent 2 h incubation in dbcAMP-free medium. Relative to untreated complexes, none of these treatments disrupted intercellular communication between cumulus cells and the oocyte. Elevating follicle cAMP levels with cholera toxin induced maturation of follicle-enclosed oocytes when cumulus cell-oocyte coupling was still fully maintained. These results are interpreted to indicate that gonadotropin-mediated acceleration of maturation is via a cAMP-dependent reduction in the level of a maturation inhibitor present in granulosa/cumulus cells.  相似文献   

4.
In the growing follicle, communication between the oocyte and its surrounding follicular cells is essential for normal oocyte and follicular development. Maturation of the fully grown oocyte in vivo is associated with the loss of cumulus cell-oocyte gap junctional communication, preventing entry of meiotic-modulating factors such as cAMP into the oocyte. We have previously shown that oocyte and cumulus cell cAMP levels can be independently regulated using inhibitors of cell-specific phosphodiesterase (PDE) isoenzymes. The objectives of this study were to examine the effects of cell type-specific PDE inhibitors on the maintenance of cumulus cell-oocyte gap junction communication (GJC) and oocyte meiotic progression. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles of abattoir-derived ovaries. Cumulus cell-oocyte GJC during oocyte maturation was quantified using the fluorescent dye, calcein-AM. COCs were cultured in the presence of specific PDE inhibitors, milrinone (an oocyte PDE3 inhibitor) or rolipram (a cumulus cell PDE4 inhibitor), and were pulsed with calcein-AM to allow dye transfer between the two cell types. Following cumulus cell removal, fluorescence in denuded oocytes was measured by microphotometry, and meiotic progression was assessed. In control COCs, dye transfer from cumulus cells to the oocyte fell progressively from 0 to 9 h, after which oocyte-cumulus cell GJC was completely lost. Loss of GJC was significantly attenuated (P < 0.05) during this time in response to treatment with milrinone and rolipram. Forskolin maintained GJC at the initial 0 h level until 3-4 h of culture, whereas treatment with milrinone and forskolin together actually increased the level of dye transfer above that in COCs treated with forskolin alone. Importantly, all treatments that prolonged GJC also delayed meiotic resumption, with meiosis generally resuming when fluorescence had fallen to approximately 40% of initial levels. These results, together with our previous studies, demonstrate that treatments that maintain or elevate cAMP levels in cumulus cells, oocytes, or both result in prolonged oocyte-cumulus cell communication and delayed meiotic resumption.  相似文献   

5.
Cumulus cells are metabolically coupled to oocytes via heterologous gap junctions. This coupling terminates near the time of ovulation, and the termination appears to be correlated with the mucification of the cumulus cells lying immediately adjacent to the oocytes. The first objective of this project was to determine whether follicle stimulating hormone (FSH) induction of cumulus cell-oocyte uncoupling could occur independently of FSH-stimulated cumulus mucification (expansion). Intercellular coupling was measured as a percentage of radiolabeled choline (or its metabolites) that was incorporated into the oocyte relative to the total amount of radiolabel incorporated into the entire cumulus cell-oocyte complex. It was found that the complete suppression of FSH-stimulated cumulus expansion with chondroitin sulfate B had no suppressive effect on FSH-stimulated cumulus cell-oocyte uncoupling. This finding showed that FSH-stimulated cumulus expansion was not required for cumulus cell-oocyte uncoupling. Since 17β-estradiol, testosterone, or progesterone could not induce maximal cumulus cell uncoupling, it was concluded that the uncoupling-promoting action of FSH was probably not mediated by steroid hormones. A partial uncoupling of cumulus cells and oocytes was found when spontaneous oocyte maturation had occurred in the absence of FSH. This partial uncoupling was prevented by incubation of cumulus cell-oocyte complexes in concentrations of dibutyryl cyclic adenosine monophosphate (dbcAMP) or 3-isobutyl-1-methyl xanthine (IBMX) (0.25 and 0.10 mM respectively) that suppressed spontaneous oocyte maturation without inducing cumulus expansion. These inhibitors also prevented the maximal induction of uncoupling that would have been provoked by biological grade preparations of either FSH or luteinizing hormone (LH). It was concluded that two factors were required to bring about maximal cumulus cell-oocyte uncoupling: one factor was dependent upon the action of gonadotropins on cumulus cell function, the other factor appeared to be a function of the oocytes, since maximal uncoupling could occur only after the germinal vesicles had broken down.  相似文献   

6.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific growth factors that appear to play key roles in granulosa cell development and fertility in most mammalian species. We have evaluated the role(s) of these paracrine factors in the development and function of both the cumulus cells and oocytes by assessing cumulus expansion, oocyte maturation, fertilization, and preimplantation embryogenesis in Gdf9+/-Bmp15-/- [hereafter, double mutant (DM)] mice. We found that cumulus expansion, as well as the expression of hyaluronon synthase 2 (Has2) mRNA was impaired in DM oocyte-cumulus cell complexes. This aberrant cumulus expansion was not remedied by coculture with normal wild-type (WT) oocytes, indicating that the development and/or differentiation of cumulus cells in the DM, up to the stage of the preovulatory luteinizing hormone (LH) surge, is impaired. In addition, DM oocytes failed to enable FSH to induce cumulus expansion in WT oocytectomized (OOX) cumulus. Moreover, LH-induced oocyte meiotic resumption was significantly delayed in vivo, and this delayed resumption of meiosis was correlated with the reduced activation of mitogen-activated protein kinase (MAPK) in the cumulus cells, thus suggesting that GDF9 and BMP15 also regulate the function of cumulus cells after the preovulatory LH surge. Although spontaneous in vitro oocyte maturation occurred normally, oocyte fertilization and preimplantation embryogenesis were significantly altered in the DM, suggesting that the full complement of both GDF9 and BMP15 are essential for the development and function of oocytes. Because receptors for GDF9 and BMP15 have not yet been identified in mouse oocytes, the effects of the mutations in the Bmp15 and Gdf9 genes on oocyte development and functions must be produced indirectly by first affecting the granulosa cells and then the oocyte. Therefore, this study provides further evidence for the existence and functioning of an oocyte-granulosa cell regulatory loop.  相似文献   

7.
The comparative investigation of the individual and joint impact of prolactin (PRL, 50 ng/ml) and theophylline (TP), a nonselective inhibitor of phosphodiesterases, on nuclear maturation of bovine oocytes and the expansion of cumulus cells enclosing the oocytes was carried out using a model of in vitro culturing. It has been shown that TP (5 mM) exerts a short-term inhibitory action on oocyte meiosis reinitiation and blocks it at diakinesis and metaphase I stages as well as inhibits the cumulus expansion. The addition of PRL to the medium containing TP caused the decrease in the rate of oocytes at diplotene stage after 6 h of culturing and the increase in the rate of oocytes attained the closing stages of maturation after 24 h of culturing. Furthermore, PRL suppressed partly the inhibitory impact of TP on the expansion of cumulus cells. The data obtained suggest the signal cascade induced by PRL in bovine oocyte-cumulus complexes to be compled with cAMP-dependent intracellular pathway.  相似文献   

8.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

9.
Intercellular gap-junctional communication (GJC) plays an important role in ovarian cell physiology. Closure of GJC has been proposed to be involved in oocyte maturation, particularly in the resumption of meiosis, both in vivo and in vitro, by controlling the flow of meiosis inhibitors, such as cAMP and cGMP. Understanding how GJC dynamics are regulated during in vitro maturation (IVM) could provide a powerful tool for controlling meiotic resumption and oocyte maturation in vitro. Since little is known about the GJC dynamic regulation between cumulus cells, we have developed an assay based on recovery of calcein fluorescence in photobleached cumulus cells, a gap-FRAP assay. The GJC profile has been characterized during the first hours of porcine IVM. We showed that equine chorionic gonadotropin (eCG) and epidermal growth factor (EGF) down-regulated GJC effectiveness between cumulus cells. However, human chorionic gonadotropin was not down-regulating GJC effectiveness. We also showed that the GJC network expanded during this period and that this effect was not regulated by gonadotropins. Porcine follicular fluid present in the maturation medium also had an impact on GJC regulation, increasing GJC network establishment and the effectiveness of calcein transfer rate between cumulus cells. These results show that both eCG and EGF are regulating the decrease in GJC effectiveness after 4.5 h of IVM, while the network extension is gonadotropin independent. Regulation of GJC between cumulus cells would then be specifically regulated during in vitro IVM.  相似文献   

10.
The mechanism of action of a gonadotropin releasing hormone (GnRH) agonistic analog ([D-Ala6]GnRH) on the rat ovary has been studied in comparison to similar effects of luteinizing hormone (LH). Stimulation of meiosis resumption in vitro in follicle-enclosed oocytes by both LH and [D-Ala6] GnRH, was blocked by elevated levels of cAMP as demonstrated when either dibutyryl cAMP or the phosphodiesterase inhibitor methylisobutylxanthine was present in the culture medium. In vivo, the prostaglandin synthase inhibitor indomethacin, which blocks LH-induced ovulation, also inhibited ovulation induced by the GnRH analog in hypophysectomized rats. On the other hand, the potent GnRH-antagonist [D-pGlu1, pClPhe2, D-Trp3,6] GnRH which blocked the stimulatory effect of the agonist on oocyte maturation and ovulation had no effect on LH action. It is concluded that while a GnRH-like peptide does not seem to mediate LH action on the ovarian follicles, both LH and GnRH agonist share some common mechanistic pathways at a post-receptor locus.  相似文献   

11.
It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.  相似文献   

12.
Cyclic AMP is one of the key regulators of mammalian meiosis. In the present work, realization pathways of the previously revealed modulating effect of prolactin (PRL) on the cAMP-dependent mechanism of meiosis regulation in bovine oocytes were studied. A comparative investigation of individual and combined effects of PRL (50 ng/ml) and an activator of adenylate cyclase forskolin (FK, 20 μM) on the meiotic reinitiation and completion of nuclear maturation in cumulus-surrounded and cumulus-free oocytes was performed. It has been shown that the pattern of the effects of PRL on the meiotic resumption in oocytes devoid of cumulus cells depends on the presence of FK in the culture medium. Furthermore, the realization of this effect is not associated with the activation of cytoplasmic isoforms of protein kinase C. It has also been found that PRL inhibits the retarding action of FK on the completion of oocyte nuclear maturation both in the presence and absence of cumulus cells. These findings suggest that PRL may modulate the functioning of the cAMP-dependent mechanism of meiosis regulation by the direct action on bovine oocytes, with realization of this action being independent of the metabolic coupling of oocytes with cumulus cells.  相似文献   

13.
Role of the epidermal growth factor network in ovarian follicles   总被引:7,自引:0,他引:7  
The LH surge causes major remodeling of the ovarian follicle in preparation for the ovulatory process. These changes include reprogramming of granulosa cells to differentiate into luteal cells, changes in cumulus cell secretory properties, and oocyte maturation. This review summarizes published data in support of the concept that LH stimulation of ovarian follicles involves activation of a local epidermal growth factor (EGF) network. A model describing this property of LH signaling and its branching to other signaling modules is discussed. According to this model, LH activation of mural granulosa cells stimulates cAMP signaling, which, in turn, induces the expression of the EGF-like growth factors epiregulin, amphiregulin, and betacellulin. These growth factors function by activating EGF receptors in either an autocrine/juxtacrine fashion within the mural layer, or they diffuse to act on cumulus cells. Activation of EGF receptor signaling in cumulus cells, together with cAMP priming, triggers oocyte nuclear maturation and acquisition of developmental competence as well as cumulus expansion. This model has important implications for ovarian physiology and for the development of new strategies for the pharmacological control of ovulation and for gamete maturation in vitro.  相似文献   

14.
James Deng 《Steroids》2009,74(7):595-822
Luteinizing hormone (LH) mediates many important processes in ovarian follicles, including cumulus cell expansion, changes in gap junction expression and activity, sterol and steroid production, and the release of paracrine signaling molecules. All of these functions work together to trigger oocyte maturation (meiotic progression) and subsequent ovulation. Many laboratories are interested in better understanding both the extra-oocyte follicular processes that trigger oocyte maturation, as well as the intra-oocyte molecules and signals that regulate meiosis. Multiple model systems have been used to study LH-effects in the ovary, including fish, frogs, mice, rats, pigs, and primates. Here we provide a brief summary of oocyte maturation, focusing primarily on steroid-triggered meiotic progression in frogs and mice. Furthermore, we present new studies that implicate classical steroid receptors rather than alternative non-classical membrane steroid receptors as the primary regulators of steroid-mediated oocyte maturation in both of these model systems.  相似文献   

15.
The role of some intraovarian regulators of the final stages of gametogenesis is analysed. It is shown that the epidermal growth factor (EGF) in concentration of 1 and 10 ng/ml is able to induce reinitiation of meiosis from dictyotene stage during cultivation of the ovarian follicles of prepuberal mice in the serum-free medium after gonadotrophic stimulation. The pattern of maturation was analogous to that of maturation after HCG (LH) administration. Also, the EGF is able to stimulate meiosis reinitiation in the culture of cumulus-free oocytes blocked with cAMP at the stage of dictyotene. At the same time fibroblast growth factors and insulin do not demonstrate such an activity. Taking into consideration a high sensibility of oocytes to the EGF action, and also the fact that the character of changes of steroid hormones secreted by the ovary in culture under the action of EGF is the same as that under the influence of LH it is suggested that, the EGF and EGF-like proteins secreted by somatic follicle cells are the paracrinic regulators of the mammalian oocyte maturation which modulate neuroendocrine factors of the oogenesis control.  相似文献   

16.
Rabbit ovaries were isolated surgically before the ovulatory gonadotrophin stimulation and perfused in vitro. Untreated, control ovaries never ovulated. Ovaries treated in vitro with ovine LH ovulated 10-14 h later and the oocytes had undergone germinal vesicle breakdown (GVB). LH induced increases in progesterone secretion from the treated ovaries. A 3 beta-hydroxysteroid dehydrogenase blocker ('Compound A') effectively reduced progesterone secretion into the perfusate and follicular fluid to very low levels but had no effect on ovulation rate or on oocyte maturation. Excessively high progesterone levels were obtained artificially in perfusates by addition of exogenous steroid; the number of ovaries ovulating was markedly reduced but there was no effect on oocyte maturation. It is concluded that the rise in progesterone that normally occurs immediately after the LH surge is not a prerequisite for ovulation in the rabbit. However, progesterone may have a modifying effect on LH-induced follicle rupture when at a pharmacologically high level.  相似文献   

17.
Prostaglandins and preovulatory follicular maturation in mice   总被引:1,自引:0,他引:1  
Experiments have been carried out in an effort to reverse the indomethacin-induced inhibition of preovulatory follicular development in immature superovulated mice utilizing prostaglandins E2 and F2 alpha. All mice were primed with 5 IU pregnant mare's serum gonadotropin followed 40 h later by 80 IU luteinizing hormone (LH). Animals were sacrificed 10 1/2 or 11 1/2-12 h post-LH, at which time ovaries were fixed and prepared for microscopic observation. Control mice receiving both indomethacin and prostaglandin (PG) vehicles averaged 92% germinal vesicle breakdown, and 82% of maturing oocytes were surrounded by an expanded cumulus oophorus. Ovarian weight increased by 29% and the apical walls of preovulatory follicles demonstrated appreciable thinning following LH administration. In mice receiving indomethacin plus PG vehicle, follicular maturation was suppressed in a dose-dependent manner; in mice receiving 10 mg/kg, less than 50% of the oocytes resumed meiosis and, of these, only 9% were accompanied by cumulus expansion. Ovarian weight gain was also inhibited, and the apical follicle wall exhibited few signs of preovulatory thinning. PGE2 and PGF2 alpha both reversed the inhibition of cumulus and oocyte maturation induced by indomethacin, though PGE2 was more effective. Only PGF2 alpha promoted apical follicular thinning, and neither PG had a significant effect on ovarian weight. We conclude that, in mice, PGs may play an integral role during preovulatory maturation of the oocyte and cumulus, as well as thinning of the apical wall.  相似文献   

18.
A continuous exposure of follicle-enclosed mouse oocytes to ovine luteinizing hormone (LH, 10 μg/ml) in vitro resulted in a 3-fold elevation of CAMP levels in the follicle cells, but not the oocytes, with subsequent oocyte maturation. When follicle-enclosed oocytes were exposed to forskolin (0.01–10 μM) for 2 hr and then incubated in forskolin-free medium (transient exposure group), oocytes underwent germinal vesicle breakdown in a dose-dependent manner. In contrast, a continuous exposure of the follicles to forskolin (10 μM) for up to 10 hr failed to induce resumption of meiosis. Follicle cell cAMP levels increased within 2 hr after the initial exposure to forskolin, and thereafter decreased rapidly regardless of whether forskolin treatment was transient or continuous. A similar transient increase in oocyte cAMP levels was observed after transient or continuous treatment with forskolin. It was evident, however, that at any time examined oocyte cAMP levels were consistently higher in the continuous exposure group than in the transient exposure group. Furthermore, a continuous exposure to forskolin also blocked LH-induced meiotic maturation. These findings suggest that elevated levels of cAMP in the oocyte block meiotic maturation in mouse oocytes. The present results further suggest that an increase in follicle cell cAMP levels is essential to the LH-induced meiotic maturation.  相似文献   

19.
哺乳动物卵巢排卵是一个复杂的调控过程。卵泡成熟破裂后,卵母细胞从卵巢中排出。卵泡细胞感受排卵刺激,并诱导卵母细胞减数分裂的恢复及其随后的释放。卵母细胞及其周围颗粒细胞的旁分泌在对此起关键性作用,其中卵母细胞对其释放具有决定性作用。作者先前已经阐述过颗粒细胞在哺乳动物卵巢排卵过程中的调控作用,该文将从卵母细胞的发育及其调控角度重点阐明其在排卵过程中的决定作用,旨在进一步理解哺乳动物卵巢的排卵过程,同时为不孕不育等卵巢疾病的治疗提供重要的研究方向和理论基础。  相似文献   

20.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号