首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous immunofluorescence studies of microtubule distribution in fertilized sea urchin eggs have suffered from poor resolution caused by cell thickness, unavoidable artifacts resulting from excessive flattening, or extraction by detergents of membranes and other lipid-containing structures that may be of interest in relation to the microtubules. To avoid these difficulties, we have developed a fixation and embedding protocol based on buffered paraformaldehyde fixation and butyl-methyl methacrylate embedment, which allows immunofluorescence staining of 0.5-1 micron sections. Polymerization artifacts are reduced by polymerizing the methacrylate at a relatively low temperature (40-45 degrees C) and by flat embedding for more uniform polymerization. Using this method, we have examined mitotic stages in the first cleavage cycle of the sea urchin Strongylocentrotus purpuratus. We provide evidence that the interphase microtubules that appear after first division are not derived from the mitotic asters but are new structures growing from organizing centers within the degenerating mitotic asters. During the transition from mitosis to interphase, there is a temporary overlap of old and new microtubules to form a very large composite aster at telophase before the old structure finally disappears.  相似文献   

2.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

3.
Following fertilization, the Xenopus egg cortex rotates relative to the cytoplasm by 30 degrees about a horizontal axis. The direction of rotation, and as a result the orientation of the embryonic body axes, is normally specified by the position of sperm entry. The mechanism of rotation appears to involve an array of aligned microtubules in the vegetal cortex (Elinson and Rowning, 1988, Devl Biol. 128, 185-197). We performed anti-tubulin immunofluorescence on sections to follow the formation of this array. Microtubules disappear rapidly from the egg following fertilization, and reappear first in the sperm aster. Surprisingly, astral microtubules then extend radially through both the animal and vegetal cytoplasm. The cortical array arises as they reach the vegetal cell surface. The eccentric position of the sperm aster gives asymmetry to the formation of the array and may explain its alignment since microtubules reaching the cortex tend to bend away from the sperm entry side. The radial polymerization of cytoplasmic microtubules is not dependent on the sperm aster or on the female pronucleus: similar but more symmetric patterns arise in artificially activated and enucleate eggs, slightly later than in fertilized eggs. These observations suggest that the cortical microtubule array forms as a result of asymmetric microtubule growth outward from cytoplasm to cortex and, since cortical and cytoplasmic microtubules remain connected throughout the period of the rotation, that the microtubules of the array rotate with the cytoplasm.  相似文献   

4.
Studies examining cytoplasmic and sperm nuclear transformations in sea urchin (Arbacia punctulata) eggs inseminated at different periods after ammonia activation have been caried out at the light- and electron-microscopic levels of observation. Arbaca eggs treated with ammonia-seawater demonstrated chromosome condensation after DNA synthesis and underwent a chromosome cycle similar to that described for Lytechinus [Mazia, 1947]. Cortical granule reaction, fertilization cone formation, and sperm aster development in eggs fertilized at 20 (interphase), 50 (prometaphase), and 180 (interphase) min after ammonia activation were structurally simialr to processes in untreated zygotes. Cyclical changes in the formation of fertilization cones and sperm asters, as reported for eggs fertilized after activation by agents that induce a cortical granule reaction, were not observed. Although sperm nuclear transformations were prolonged (14 vs 18 min), male pronuclei that developed in eggs fertilized 20 min after ammonia activation were morphologically similar to those observed in fertilized, untreated ova and incorporated 3H-thymidine. Sperm incorporated into eggs at 50 min after ammonia activation underwent nuclear envelope breakdown and chromatin despersion; however, 3H-thymidine incorporation was not observed, and male pronuclei rarely developed (less than 5% of all specimens examined). Subsequent to dispersion, the paternal chromatin condensed into chromosomes which were associated with an aster. These results demonstrate that although ammonia-activated eggs inseminated at interphase or prometaphase undergo similar cytoplasmic alterations, sperm nuclear transformations vary with the chromosome cycle of the egg.  相似文献   

5.
To determine the responsible components of isolated sperm centrioles for the aster induction in sea urchin eggs, the sperm centriolar fraction was treated with various enzymes and was injected into the unfertilized eggs, then the aster formation in first division was observed after fertilization.
Treatment with 1 μg/ml or higher concentration of trypsin inhibited the centriolar activity for aster induction, whereas the treatment with 50 μg/ml of DNase 1, 80 μg/ml of RNase A, 40 μg/ml of RNase T1, or 0.1 μg/ml of trypsin had no inhibitory effect to induce asters. Injection of 0.5 μg/ml of RNase A or 1 mUg/ml of RNase T1 into the egg caused the detention of mitosis at the streak stage. To examine the temperature effect for aster induction, the centriolar fraction was pre-treated with boiling temperature, and it was found that the fraction became incapable to induce any aster.
Results obtained suggest that the effective components of the sperm centriolar fraction to induce asters in the fertilized sea urchin eggs are the proteins but not the nucleic acids. The aster inducing activity is destroyed by heat treatment.  相似文献   

6.
We have developed a procedure for isolating intact sperm asters in quantity from fertilized sea urchin eggs. This procedure is based on detergent-extraction methods developed previously for the bulk isolation of mitotic apparatuses. Using this protocol it is possible to isolate sperm asters as soon as they appear in the fertilized egg or at any subsequent point in their brief existence.  相似文献   

7.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

8.
Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.  相似文献   

9.
Motility and the behavior and inheritance of centrosomes are investigated during mouse and sea urchin fertilization. Sperm incorporation in sea urchins requires microfilament activity in both sperm and eggs as tested with Latrunculin A, a novel inhibitor of microfilament assembly. In contrast the mouse spermhead is incorporated in the presence of microfilament inhibitors indicating an absence of microfilament activity at this stage. Pronuclear apposition is arrested by microfilament inhibitors in fertilized mouse oocytes. The migrations of the sperm and egg nuclei during sea urchin fertilization are dependent on microtubules organized into a radial monastral array, the sperm aster. Microtubule activity is also required during pronuclear apposition in the mouse egg, but they are organized by numerous egg cytoplasmic sites. By the use of an autoimmune antibody to centrosomal material, centrosomes are detected in sea urchin sperm but not in unfertilized eggs. The sea urchin centrosome expands and duplicates during first interphase and condenses to form the mitotic poles during division. Remarkably mouse sperm do not appear to have the centrosomal antigen and instead centrosomes are found in the unfertilized oocyte. These results indicate that both microfilaments and microtubules are required for the successful completion of fertilization in both sea urchins and mice, but at different stages. Furthermore they demonstrate that centrosomes are contributed by the sperm during sea urchin fertilization, but they might be maternally inherited in mammals.  相似文献   

10.
In the fertilization of sea urchin eggs, intracellular [Ca2+] (Cai) increases transiently and intracellular pH (pHi) elevates accordingly. Unlinking these two activating factors experimentally, the requirement of the increase in pHi for sperm aster formation in the sea urchin, Clypeaster japonicus, was investigated. When the eggs were injected with an EGTA or BAPTA solution, they incorporated sperm but did not organize the sperm aster. Using these sperm-incorporated eggs under the condition that an increase in Cai was blocked, pHi was regulated by two methods: (i) perfusing ammonium acetate-containing seawater; and (ii) injecting pH buffer solutions of various pH values. By either of the two methods, the sperm aster formed at pHi 7.0 or more and functioned in female pronuclear migration when the sperm aster reached the female pronucleus. Hence, the step of the transient increase in Cai at fertilization can be bypassed. In contrast, a pHi increase is indispensably required for sperm aster formation in sea urchin eggs. Moreover, under the condition that there was the transient increase in Cai, the threshold pHi value for sperm aster formation was pHi 7.0 or more. Consequently, whether a Cai increase on fertilization occurs or not, the threshold pHi value for sperm aster formation is constant in sea urchin eggs.  相似文献   

11.
A transient spiral system of fibers in the cortex of fertilized eggs of the sea urchin Strongylocentrotus purpuratus was examined with indirect immunofluorescence microscopy and found to contain tubulin. Electron microscopy identified the tubulin-containing bands as bundles of up to 40 or more microtubules. These cortical microtubules, which are initially radial, form a spiral array about the time of pronuclear fusion. This basket-like structure, at a depth of 10–15 μm below the cell surface, reaches a peak of development about 45 min after fertilization and disappears before the streak stage at 70 min, in a division cycle of slightly more than 2 h. Possible functions of the cortical microtubules, which appear to be independent of the interphase asters, are discussed.  相似文献   

12.
Eggs of the sea urchin Strongylocentrotus purpuratus were examined by indirect immunofluorescence microscopy for tubulin-containing structures at intervals from fertilization through first cleavage. The staining revealed that the monaster is made up not only of the sperm aster but also of tubulin-staining fibers originating elsewhere in the egg. The monaster does not divide directly but is broken down first before the amphiaster or interphase asters begin to form. The interphase asters reach a peak of development at the streak stage and are in turn broken down before the formation of the mitotic apparatus. The breakdown of the monaster, interphase asters, as well as the asters of the mitotic apparatus proceeds from the cell center or aster centers to the periphery of the cell and is followed by growth of new asters, also proceeding outward from the aster centers. The pattern suggests a transient wavelike movement of some condition, or factor, which favors microtubule depolymerization.  相似文献   

13.
Microtubules in ascidian eggs during meiosis, fertilization, and mitosis   总被引:14,自引:0,他引:14  
The sequential changes in the distribution of microtubules during germinal vesicle breakdown (GVBD), fertilization, and mitosis were investigated with antitubulin indirect immunofluorescence microscopy in several species of ascidian eggs (Molgula occidentalis, Ciona savignyi, and Halocynthia roretzi). These alterations in microtubule patterns were also correlated with observed cytoplasmic movements. A cytoplasmic latticework of microtubules was observed throughout meiosis. The unfertilized egg of M. occidentalis had a small meiotic spindle with wide poles; the poles became focused after egg activation. The other two species had more typical meiotic spindles before fertilization. At fertilization, a sperm aster first appeared near the cortex close to the vegetal pole. It enlarged into an unusual asymmetric aster associated with the egg cortex. The sperm aster rapidly grew after the formation of the second polar body, and it was displaced as far as the equatorial region, corresponding to the site of the myoplasmic crescent, the posterior half of the egg. The female pronucleus migrated to the male pronucleus at the center of the sperm aster. The microtubule latticework and the sperm aster disappeared towards the end of first interphase with only a small bipolar structure remaining until first mitosis. At mitosis the asters enlarged tremendously, while the mitotic spindle remained remarkably small. The two daughter nuclei remained near the site of cleavage even after division was complete. These results document the changes in microtubule patterns during maturation in Ascidian oocytes, demonstrate that the sperm contributes the active centrosome at fertilization, and reveal the presence of a mitotic apparatus at first division which has an unusually small spindle and huge asters.  相似文献   

14.
A spiral cortical fiber system in fertilized sea urchin eggs   总被引:2,自引:0,他引:2  
Fiber systems of fertilized eggs of the sea urchin Strongylocentrotus purpuratus become aggregated and thus visible in phase-contrast light microscopy, when cells are fixed in 2% glutaraldehyde in 0.45 M Na-acetate buffer at pH 6.0 and embedded in epoxy. Studies of whole mounts and of 1-μm stained sections of the first-division cycle revealed a spiral array of subcortical fibers that apparently grow inward from the cell surface shortly after sperm entry and disappear prior to streak stage. They are independent of the microtubule system associated with the sperm aster, amphiaster, and mitotic apparatus. Their chemical identity is not known, but they may very likely be actin.  相似文献   

15.
Although mechanisms that contribute to microtubule (MT) aster positioning have been extensively studied, still little is known on how asters move inside cells to faithfully target a cellular location. Here, we study sperm aster centration in sea urchin eggs, as a stereotypical large-scale aster movement with extreme constraints on centering speed and precision. By tracking three-dimensional aster centration dynamics in eggs with manipulated shapes, we show that aster geometry resulting from MT growth and interaction with cell boundaries dictates aster instantaneous directionality, yielding cell shape–dependent centering trajectories. Aster laser surgery and modeling suggest that dynein-dependent MT cytoplasmic pulling forces that scale to MT length function to convert aster geometry into directionality. In contrast, aster speed remains largely independent of aster size, shape, or absolute dynein activity, which suggests it may be predominantly determined by aster growth rate rather than MT force amplitude. These studies begin to define the geometrical principles that control aster movements.  相似文献   

16.
Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC-labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin.  相似文献   

17.
The regulation of the microtubule-mediated motions within eggs during fertilization was investigated in relation to the shift in intracellular pH (pHi) that occurs during the ionic sequence of egg activation in the sea urchins Lytechinus variegatus and Arbacia punctulata. Microtubule assembly during formation of the sperm aster and mitotic apparatus was detected by anti-tubulin immunofluorescence microscopy, and the microtubule-mediated migrations of the sperm and egg nuclei were studied with time-lapse video differential interference contrast microscopy. Manipulations of intracellular pH were verified by fluorimetric analyses of cytoplasmic fluorescein incorporated as fluorescein diacetate. The ionic sequence of egg activation was manipulated i) to block the pHi shift at fertilization or reduce the pHi of fertilized eggs to unfertilized values, ii) to elevate artificially the pHi of unfertilized eggs to fertilized values, and iii) to elevate artificially or permit the normal pHi shift in fertilized eggs in which the pHi shift at fertilization was previously prevented. Fertilized eggs in which the pHi shift was suppressed did not assemble microtubules or undergo the normal microtubule-mediated motions. In fertilized eggs in which the pHi was reduced to unfertilized levels after the assembly of the sperm aster, no motions were detected. If the intracellular pH was later permitted to rise, normal motile events leading to division and development occurred, delayed by the time during which the pH elevation was blocked. Microtubule-mediated events occurred in eggs in which the intracellular pH was elevated, even in unfertilized eggs in which the pH was artificially increased. These results indicate that the formation and normal functioning of the egg microtubules is initiated, either directly or indirectly, by the shift in intracellular pH that occurs during fertilization.  相似文献   

18.
Multiple asters can be artificially induced in sea urchin fertilized eggs by the microinjection of the centriolar fraction of sperm homogenate. Investigation was continued by the electron microscopy to determine whether the multi-aster formation was due to the centrioles or the contaminants in the injected sperm fraction. Thirty three asters in 3 operated eggs were thoroughly examined, and we confirmed that the presence of centrioles in the central region of 26 asters. We considered that the rest of them might contained the centrioles in the sections lost during the preparation procedures. Fragmented axoneme, the plug of electron dense material, and the centriolar fossa, which were usually accompanied with the isolated centrioles, disappeared from the centrioles in these multiple asters. However, electron dense, amorphous materials were formed associating with the triplet blades and distributed around the centrioles. Many astral microtubules were terminated in these pericentriolar materials. Results obtained suggest that, although the pericentriolar material is acting as the microtubule organizing center, all multiple asters, except those derived from fertilization (2 asters per egg), are most likely induced by the injected centrioles and not by the contaminants.  相似文献   

19.
The importance of nuclear DNA synthesis for the doubling, or reproduction, of centrosomes in cells that are not growth-limited, such as sea urchin eggs, has not been clearly defined. Studies of enucleated, fertilized eggs show that nuclear activities are not required at each cell cycle for the normal reproduction of the complete centrosome. However, other studies report that the inhibition of nuclear DNA synthesis in intact eggs by the drug aphidicolin prevents centrosome reproduction and entry into mitosis as seen by nuclear envelope breakdown. To resolve this paradox, we systematically characterized the effect of aphidicolin on cell division in eggs from three species of sea urchins. Eggs were continuously treated with 5 or 10 micrograms/ml aphidicolin starting 5 min after fertilization. This blocked total incorporation of 3H-thymidine into DNA by at least 90%, as previously reported. We found that the sperm aster always doubles prior to first mitosis. Over a period of several hours, the centrosomes reproduce in the normal 2-4-8-16 fashion, with a period that is longer and more variable than normal. In every culture, a variable percentage of the eggs undergoes nuclear envelope breakdown. Once broken down, the nuclear envelope never visibly reforms even though centrosomes continue to double. Fluorescent labeling of DNA revealed that the chromatin does not condense into discrete chromosomes. Whether or not the nuclear envelope breaks down, the chromatin appears as an amorphous mass of fibers stretched between first two and then four asters. Later, the nuclear envelope/chromatin loses its association with some or all centrosomes. Our results were the same for all eggs at both drug concentrations. Thus, nuclear DNA synthesis is not required for centrosome reproduction in sea urchin eggs.  相似文献   

20.
Tram U  Sullivan W 《Current biology : CB》2000,10(22):1413-1419
Background: In the majority of animals, the centrosome-the microtubule-organizing center of the cell-is assembled from components of both the sperm and the egg. How the males of the insect order Hymenoptera acquire centrosomes is a mystery, as they originate from virgin birth.Results: To address this issue, we observed centrosome, spindle and nuclear behavior in real time during early development in the parthenogenetic hymenopteran Nasonia vitripennis. Female meiosis was identical in unfertilized eggs. Centrosomes were assembled before the first mitotic division but were inherited differently in unfertilized and fertilized eggs. In both, large numbers of asters appeared at the cortex of the egg after completion of meiosis. In unfertilized eggs, the asters migrated inwards and two of them became stably associated with the female pronucleus and the remaining cytoplasmic asters rapidly disappeared. In fertilized eggs, the Nasonia sperm brought in paternally derived centrosomes, similar to Drosophila melanogaster. At pronuclear fusion, the diploid zygotic nucleus was associated only with paternally derived centrosomes. None of the cytoplasmic asters associated with the zygotic nucleus and, as in unfertilized eggs, they rapidly degenerated.Conclusions: Selection and migration of the female pronucleus is independent of the sperm and its aster. Unfertilized male eggs inherit maternal centrosomes whereas fertilized female eggs inherit paternal centrosomes. This is the first system described in which centrosomes are reciprocally inherited. The results suggest the existence of a previously undescribed mechanism for regulating centrosome number in the early embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号