首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.  相似文献   

2.
Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.  相似文献   

3.
The global emergence of Plasmodium vivax strains resistant to chloroquine (CQ) since the late 1980s is complicating the current international efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria has already reached an alarming prevalence in Indonesia, East Timor and Papua New Guinea. More recently, in vivo studies have documented CQ-resistant P. vivax infections in Guyana, Peru and Brazil. Here, we summarise the available data on CQ resistance across P. vivax-endemic areas of Latin America by combining published in vivo and in vitro studies. We also review the current knowledge regarding the molecular mechanisms of CQ resistance in P. vivax and the prospects for developing and standardising reliable molecular markers of drug resistance. Finally, we discuss how the Worldwide Antimalarial Resistance Network, an international collaborative effort involving malaria experts from all continents, might contribute to the current regional efforts to map CQ-resistant vivax malaria in South America.  相似文献   

4.

Background

Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5–5 y.

Methods and Findings

An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI −3.0% to 8.4%] versus −5.0% non-inferiority margin, p = 0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%–87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing.

Conclusions

Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12610000913077 Please see later in the article for the Editors'' Summary  相似文献   

5.
6.
BackgroundMalaria causes significant morbidity and mortality in children under 5 years of age in sub-Saharan Africa and the Asia-Pacific region. Neonates and young infants remain relatively protected from clinical disease and the transplacental transfer of maternal antibodies is hypothesized as one of the protective factors. The adverse health effects of Plasmodium vivax malaria in early childhood–traditionally viewed as a benign infection–remain largely neglected in relatively low-endemicity settings across the Amazon.Methodology/Principal findingsOverall, 1,539 children participating in a birth cohort study in the main transmission hotspot of Amazonian Brazil had a questionnaire administered, and blood sampled at the two-year follow-up visit. Only 7.1% of them experienced malaria confirmed by microscopy during their first 2 years of life– 89.1% of the infections were caused by P. vivax. Young infants appear to be little exposed to, or largely protected from infection, but children >12 months of age become as vulnerable to vivax malaria as their mothers. Few (1.4%) children experienced ≥4 infections during the 2-year follow-up, accounting for 43.4% of the overall malaria burden among study participants. Antenatal malaria diagnosed by microscopy during pregnancy or by PCR at delivery emerged as a significant correlate of subsequent risk of P. vivax infection in the offspring (incidence rate ratio, 2.58; P = 0.002), after adjusting for local transmission intensity. Anti-P. vivax antibodies measured at delivery do not protect mothers from subsequent malaria; whether maternal antibodies transferred to the fetus reduce early malaria risk in children remains undetermined. Finally, recent and repeated vivax malaria episodes in early childhood are associated with increased risk of anemia at the age of 2 years in this relatively low-endemicity setting.Conclusions/SignificanceAntenatal infection increases the risk of vivax malaria in the offspring and repeated childhood P. vivax infections are associated with anemia at the age of 2 years.  相似文献   

7.
Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.  相似文献   

8.
Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden biomass greatest in severe disease and capable of mediating systemic inflammatory pathology. The lack of association between total parasite biomass and endothelial activation is consistent with accumulation in parts of the circulation devoid of endothelium. Endothelial activation, associated with circulating parasites, and systemic inflammation may contribute to pathology in vivax malaria, with microvascular dysfunction likely contributing to impaired tissue perfusion.  相似文献   

9.
Mixed infections of Plasmodium falciparum and Plasmodium vivax is high (~30%) in some malaria hypoendemic areas where the patients present with P. falciparum malaria diagnosed by microscopy. Conventional treatment of P. falciparum with concurrent chloroquine and 14 days of primaquine for all falciparum malaria patients may be useful in areas where mixed falciparum and vivax infections are high and common and also with mild or moderate G6PD deficiency in the population even with or without subpatent vivax mixed infection. It will be possibly cost-effective to reduce subsequent vivax illness if the patients have mixed vivax infection. Further study to prove this hypothesis may be warranted.  相似文献   

10.

Background

Mortality from severe pediatric falciparum malaria appears low in Oceania but Plasmodium vivax is increasingly recognized as a cause of complications and death. The features and prognosis of mixed Plasmodium species infections are poorly characterized. Detailed prospective studies that include accurate malaria diagnosis and detection of co-morbidities are lacking.

Methods and Findings

We followed 340 Papua New Guinean (PNG) children with PCR-confirmed severe malaria (77.1% P. falciparum, 7.9% P. vivax, 14.7% P. falciparum/vivax) hospitalized over a 3-year period. Bacterial cultures were performed to identify co-incident sepsis. Clinical management was under national guidelines. Of 262 children with severe falciparum malaria, 30.9%, 24.8% and 23.2% had impaired consciousness, severe anemia, and metabolic acidosis/hyperlactatemia, respectively. Two (0.8%) presented with hypoglycemia, seven (2.7%) were discharged with neurologic impairment, and one child died (0.4%). The 27 severe vivax malaria cases presented with similar phenotypic features to the falciparum malaria cases but respiratory distress was five times more common (P = 0.001); one child died (3.7%). The 50 children with P. falciparum/vivax infections shared phenotypic features of mono-species infections, but were more likely to present in deep coma and had the highest mortality (8.0%; P = 0.003 vs falciparum malaria). Overall, bacterial cultures were positive in only two non-fatal cases. 83.6% of the children had alpha-thalassemia trait and seven with coma/impaired consciousness had South Asian ovalocytosis (SAO).

Conclusions

The low mortality from severe falciparum malaria in PNG children may reflect protective genetic factors other than alpha-thalassemia trait/SAO, good nutrition, and/or infrequent co-incident sepsis. Severe vivax malaria had similar features but severe P. falciparum/vivax infections were associated with the most severe phenotype and worst prognosis.  相似文献   

11.
12.
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.  相似文献   

13.
Complicated malaria is mainly caused by Plasmodium falciparum, but, increasingly, Plasmodium vivax is also being reported as a cause. Since the reemergence of indigenous vivax malaria in 1993, cases of severe malaria have been steadily reported in Korea. Herein, we report a case of vivax malaria complicated by adult respiratory distress syndrome (ARDS) that was successfully managed with extracorporeal membrane oxygenation (ECMO). A 59-year-old man presented at our hospital with fever and abdominal pain, which had persisted for 10 days. On admission, the patient had impaired consciousness, shock, hypoxia and haziness in both lungs, jaundice, thrombocytopenia and disseminated intravascular coagulation, metabolic acidosis, and acute kidney injury. A peripheral blood smear and a rapid diagnostic test verified P. vivax mono-infection. Ten hours after admission, hypoxia became more severe, despite providing maximal ventilatory support. The administration of antimalarial agents, ECMO, and continuous venovenous hemofiltration resulted in an improvement of his vital signs and laboratory findings. He was discharged from the hospital 7 weeks later, without any sequelae.  相似文献   

14.
Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl‐tRNA synthetases (aaRSs) have been explored as anti‐bacterial and anti‐fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure‐based knowledge of the most advanced three aaRSs—lysyl‐ (KRS), prolyl‐ (PRS), and phenylalanyl‐ (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.  相似文献   

15.

Background

Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes.

Methods/Principal Findings

Through recent whole genome sequencing we obtained ≥70× coverage of the P. vivax genome from five field-isolates, resulting in ≥93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported.

Conclusions/Significance

The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations.  相似文献   

16.
Plasmodium vivax exhibits dormant liver-stage parasites, called hypnozoites, which can cause relapse of malaria. The only drug currently used for eliminating hypnozoites is primaquine. The antimalarial properties of primaquine are dependent on the production of oxidized metabolites by the cytochrome P450 isoenzyme 2D6 (CYP2D6). Reduced primaquine metabolism may be related to P. vivax relapses. We describe a case of 4 episodes of recurrence of vivax malaria in a patient with decreased CYP2D6 function. The patient was 52-year-old male with body weight of 52 kg. He received total gastrectomy and splenectomy 7 months before the first episode and was under chemotherapy for the gastric cancer. The first episode occurred in March 2019 and each episode had intervals of 34, 41, and 97 days, respectively. At the first and second episodes, primaquine was administered as 15 mg for 14 days. The primaquine dose was increased with 30 mg for 14 days at the third and fourth episodes. Seven gene sequences of P. vivax were analyzed and revealed totally identical for all the 4 samples. The CYP2D6 genotype was analyzed and intermediate metabolizer phenotype with decreased function was identified.  相似文献   

17.

Background

In order to control malaria, it is important to understand the genetic structure of the parasites in each endemic area. Plasmodium vivax is widely distributed in the tropical to temperate regions of Asia and South America, but effective strategies for its elimination have yet to be designed. In South Korea, for example, indigenous vivax malaria was eliminated by the late 1970s, but re-emerged from 1993. We estimated the population structure and temporal dynamics of transmission of P. vivax in South Korea using microsatellite DNA markers.

Methodology/Principal Findings

We analyzed 255 South Korean P. vivax isolates collected from 1994 to 2008, based on 10 highly polymorphic microsatellite DNA loci of the P. vivax genome. Allelic data were obtained for the 87 isolates and their microsatellite haplotypes were determined based on a combination of allelic data of the loci. In total, 40 haplotypes were observed. There were two predominant haplotypes: H16 and H25. H16 was observed in 9 isolates (10%) from 1996 to 2005, and H25 in 27 (31%) from 1995 to 2003. These results suggested that the recombination rate of P. vivax in South Korea, a temperate country, was lower than in tropical areas where identical haplotypes were rarely seen in the following year. Next, we estimated the relationships among the 40 haplotypes by eBURST analysis. Two major groups were found: one composed of 36 isolates (41%) including H25; the other of 20 isolates (23%) including H16. Despite the low recombination rate, other new haplotypes that are genetically distinct from the 2 groups have also been observed since 1997 (H27).

Conclusions/Significance

These results suggested a continual introduction of P. vivax from other population sources, probably North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and transmission dynamics of the parasites - information that can assist in the elimination of vivax malaria in endemic areas.  相似文献   

18.
Currently, there is a trend of an increasing number of Plasmodium vivaxmalaria cases in China that are imported across its Southeast Asia border, especially in the China-Myanmar border area (CMB). To date, little is known about the genetic diversity of P. vivax in this region. In this paper, we report the first genome sequencing of a P. vivaxisolate (CMB-1) from a vivax malaria patient in CMB. The sequencing data were aligned onto 96.43% of the P. vivax Salvador I reference strain (Sal I) genome with 7.84-fold coverage as well as onto 98.32% of 14 Sal I chromosomes. Using the de novo assembly approach, we generated 8,541 scaffolds and assembled a total of 27.1 Mb of sequence into CMB-1 scaffolds. Furthermore, we identified all 295 known virgenes, which is the largest subtelomeric multigene family in malaria parasites. These results provide an important foundation for further research onP. vivax population genetics.  相似文献   

19.
There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.  相似文献   

20.
Malaria is still a leading cause of morbidity and mortality. The increase in lipid peroxidation reported in malaria infection and antioxidant status may be a useful marker of oxidative stress during malaria infection. The aim of this study was to investigate the role of antioxidant enzymes against toxic reactive oxygen species in patients infected with Plasmodium vivax and healthy controls. Malondialdehyde levels, superoxide dismutase, and glutathione peroxidase activities were determined in 91 P. vivax patients and compared with 52 controls. Malondialdehyde levels, superoxide dismutase, and glutathione peroxidase activities were 8.07±2.29 nM/ml, 2.69±0.33 U/ml, and 49.6±3.2 U/g Hb in the patient group and 2.72±0.50 nM/ml, 3.71±0.47 U/ml, and 62.3±4.3 U/g Hb in the control group, respectively. Malondialdehyde levels were found statistically significant in patients with vivax malaria higher than in healthy controls (P<0.001). On the other hand, superoxide dismutase and glutathione peroxidase activities were found to be significantly lower in vivax malaria patients than in controls (P<0.05). There was an increase in oxidative stress in vivax malaria. The results suggested that antioxidant defense mechanisms may play an important role in the pathogenesis of P. vivax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号