首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.  相似文献   

2.
Plant diseases have recently increased and exacerbated due to several factors such as climate change, chemicals’ misuse and pollution. They represent a severe threat for both economy and global food security. Recently, several researches have been proposed for plant disease identification through modern image-based recognition systems based on deep learning. However, several challenges still require further investigation. One is related to the high variety of leaf diseases/ species along with constraints related to the collection and annotation of real-world datasets. Other challenges are related to the study of leaf disease in uncontrolled environment. Compared to major existing researches, we propose in this article a new perspective to handle the problem with two main differences: First, while most approach aims to identify simultaneously a pair of species-disease, we propose to identify diseases independently of leaf species. This helps to recognize new species holding diseases that were previously learnt. Moreover, instead of using the global leaf image, we directly predict disease on the basis of the local disease symptom features. We believe that this may decrease the bias related to common context and/or background and enables to build a more generalised model for disease classification. In particular, we propose an hybrid system that combines strengths of deep learning-based semantic segmentation with classification capabilities to respectively extract infected regions and determine their identity. For that, an extensive experimentation including a comparison of different semantic segmentation and classification CNNs has been conducted on PlantVillage dataset (leaves within homogeneous background) in order to study the extent of use of local disease symptoms features to identify diseases. Specifically, a particular enhancement of disease identification accuracy has been demonstrated in IPM and BING datasets (leaves within uncontrolled background).  相似文献   

3.
Primary crop losses in agriculture are due to leaf diseases, which farmers cannot identify early. If the diseases are not detected early and correctly, then the farmer will have to undergo huge losses. Therefore, in the field of agriculture, the detection of leaf diseases in tomato crops plays a vital role. Recent advances in computer vision and deep learning techniques have made disease prediction easy in agriculture. Tomato crop front side leaf images are considered for research due to their high exposure to diseases. The image segmentation process assumes a significant role in identifying disease affected areas on tomato leaf images. Therefore, this paper develops an efficient tomato crop leaf disease segmentation model using an enhanced radial basis function neural network (ERBFNN). The proposed ERBFNN is enhanced using the modified sunflower optimization (MSFO) algorithm. Initially, the noise present in the images is removed by a Gaussian filter followed by CLAHE (contrast-limited adaptive histogram equalization) based on contrast enhancement and un-sharp masking. Then, color features are extracted from each leaf image and given to the segmentation stage to segment the disease portion of the input image. The performance of the proposed ERBFNN approach is estimated using different metrics such as accuracy, Jaccard coefficient (JC), Dice's coefficient (DC), precision, recall, F-Measure, sensitivity, specificity, and mean intersection over union (MIoU) and are compared with existing state-of-the-art methods of radial basis function (RBF), fuzzy c-means (FCM), and region growing (RG). The experimental results show that the proposed ERBFNN segmentation model outperformed with an accuracy of 98.92% compared to existing state-of-the-art methods like RBFNN, FCM, and RG, as well as previous research work.  相似文献   

4.
浙江省森林信息提取及其变化的空间分布   总被引:4,自引:0,他引:4  
姜洋  李艳 《生态学报》2014,34(24):7261-7270
如何利用遥感技术提取森林信息是遥感应用的重要领域之一。以不同时相的Landsat TM/ETM+为数据源,采用面向对象和基于多级决策树的分类方法得到浙江省2000年、2005年以及2010年的森林植被覆被图。经实地采样点验证,2010年分类精度达到92.76%,精度满足要求。介绍了浙江森林信息的快速提取方法,即统计不同森林类型的Landsat TM影像原始波段和LBV变换值以及各种植被指数在各时相上的差异,经过C5决策树训练,选取合适的规则和阈值实现森林信息的提取。结果表明,面向对象分割与决策树算法结合可以作为森林信息提取的有效方法。最后,通过对3期森林专题图进行空间叠加分析,得到了森林资源动态变化的空间分布,并以此为基础对林地变化的类型及原因进行分析,结果显示浙江省森林资源变化主要分布在浙西北山区、浙中南山区以及沿海地带,这一结果可以为有关部门的决策提供依据。  相似文献   

5.
Machine learning (ML) models are a leading analytical technique used to monitor, map and quantify land use and land cover (LULC) and its change over time. Models such as k-nearest neighbour (kNN), support vector machines (SVM), artificial neural networks (ANN), and random forests (RF) have been used effectively to classify LULC types at a range of geographical scales. However, ML models have not been widely applied in African tropical regions due to methodological challenges that arise from relying on the coarse-resolution satellite images available for these areas. In this study, we compared the performance of four ML algorithms (kNN, SVM, ANN and RF) applied to LULC monitoring within the Mayo Rey department, North Province, Cameroon. We used satellite data from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) combined with 8 Operational Land Imager (OLI) images of northern Cameroon for November 2000 and November 2020. Our results showed that all four classification algorithms produced relatively high accuracy (overall classification accuracy >80%), with the RF model (> 90% classification accuracy) outperforming the kNN, SVM, and ANN models. We found that approximately 7% of all forested areas (dense forest and woody savanna) were converted to other land cover types between 2000 and 2020; this forest loss is particularly associated with an expansion of both croplands and built-up areas. Our study represents a novel application and comparison of statistical and ML approaches to LULC monitoring using coarse-resolution satellite images in an African tropical forest and savanna setting. The resulting land cover maps serve as an important baseline that will be useful to the Cameroon government for policy development, conservation planning, urban planning, and deforestation and agricultural monitoring.  相似文献   

6.
In this paper, we focus on animal object detection and species classification in camera-trap images collected in highly cluttered natural scenes. Using a deep neural network (DNN) model training for animal- background image classification, we analyze the input camera-trap images to generate a multi-level visual representation of the input image. We detect semantic regions of interest for animals from this representation using k-mean clustering and graph cut in the DNN feature domain. These animal regions are then classified into animal species using multi-class deep neural network model. According the experimental results, our method achieves 99.75% accuracy for classifying animals and background and 90.89% accuracy for classifying 26 animal species on the Snapshot Serengeti dataset, outperforming existing image classification methods.  相似文献   

7.
Understanding environmental factors that influence forest health, as well as the occurrence and abundance of wildlife, is a central topic in forestry and ecology. However, the manual processing of field habitat data is time-consuming and months are often needed to progress from data collection to data interpretation. To shorten the time to process the data we propose here Habitat-Net: a novel deep learning application based on Convolutional Neural Networks (CNN) to segment habitat images of tropical rainforests. Habitat-Net takes color images as input and after multiple layers of convolution and deconvolution, produces a binary segmentation of the input image. We worked on two different types of habitat datasets that are widely used in ecological studies to characterize the forest conditions: canopy closure and understory vegetation. We trained the model with 800 canopy images and 700 understory images separately and then used 149 canopy and 172 understory images to test the performance of Habitat-Net. We compared the performance of Habitat-Net to the performance of a simple threshold based method, manual processing by a second researcher and a CNN approach called U-Net, upon which Habitat-Net is based. Habitat-Net, U-Net and simple thresholding reduced total processing time to milliseconds per image, compared to 45 s per image for manual processing. However, the higher mean Dice coefficient of Habitat-Net (0.94 for canopy and 0.95 for understory) indicates that accuracy of Habitat-Net is higher than that of both the simple thresholding (0.64, 0.83) and U-Net (0.89, 0.94). Habitat-Net will be of great relevance for ecologists and foresters, who need to monitor changes in their forest structures. The automated workflow not only reduces the time, it also standardizes the analytical pipeline and, thus, reduces the degree of uncertainty that would be introduced by manual processing of images by different people (either over time or between study sites).  相似文献   

8.
Segmenting three-dimensional (3D) microscopy images is essential for understanding phenomena like morphogenesis, cell division, cellular growth, and genetic expression patterns. Recently, deep learning (DL) pipelines have been developed, which claim to provide high accuracy segmentation of cellular images and are increasingly considered as the state of the art for image segmentation problems. However, it remains difficult to define their relative performances as the concurrent diversity and lack of uniform evaluation strategies makes it difficult to know how their results compare. In this paper, we first made an inventory of the available DL methods for 3D cell segmentation. We next implemented and quantitatively compared a number of representative DL pipelines, alongside a highly efficient non-DL method named MARS. The DL methods were trained on a common dataset of 3D cellular confocal microscopy images. Their segmentation accuracies were also tested in the presence of different image artifacts. A specific method for segmentation quality evaluation was adopted, which isolates segmentation errors due to under- or oversegmentation. This is complemented with a 3D visualization strategy for interactive exploration of segmentation quality. Our analysis shows that the DL pipelines have different levels of accuracy. Two of them, which are end-to-end 3D and were originally designed for cell boundary detection, show high performance and offer clear advantages in terms of adaptability to new data.  相似文献   

9.
冠层树种多样性是自然森林生态系统功能和服务的重要基础。及时掌握冠层多样性的现状及变化趋势, 是探讨诸多重要生态学问题的前提, 更是制定合理生物多样性保护策略的基础。但受制于传统的多样性信息采集方法, 区域尺度的高精度冠层多样性监测发展较为缓慢; 许多在气候变化和人类干扰下的生物多样性分布信息得不到及时更新。近年来基于无人机的冠层高光谱影像收集与分析技术的发展, 使得冠层多样性监测迎来了新的发展契机。本文从森林冠层高光谱影像出发, 介绍了与多样性监测相关的无人机航拍和基于深度学习的图像处理技术, 并结合已有文献, 探讨了无人机高光谱应用于森林冠层树种多样性监测的研究现状、可行性、优势及缺陷等。我们认为冠层高光谱影像为多样性监测提供了不可或缺且丰富的原始信息; 而无人机与高光谱相机的结合, 使得区域化高频率(如每周)、高精度(如分米乃至厘米级)的冠层多样性信息自动化收集成为可能。然而高光谱影像数据量大、数据维度高与数据结构非线性的特点为影像处理带来了挑战, 而深度学习技术的飞跃, 使得从冠层高光谱影像中提取个体及物种信息达到了极高精度。恰当地使用这些技术将大大提升冠层树种多样性的自动化监测水平, 由此也将帮助我们在当前剧变环境下及时掌握森林冠层多样性的现状与变化, 为生物多样性研究与保护提供可靠的数据支撑。  相似文献   

10.
In the current clinical care practice, Gleason grading system is one of the most powerful prognostic predictors for prostate cancer (PCa). The grading system is based on the architectural pattern of cancerous epithelium in histological images. However, the standard procedure of histological examination often involves complicated tissue fixation and staining, which are time‐consuming and may delay the diagnosis and surgery. In this study, label‐free multiphoton microscopy (MPM) was used to acquire subcellular‐resolution images of unstained prostate tissues. Then, a deep learning architecture (U‐net) was introduced for epithelium segmentation of prostate tissues in MPM images. The obtained segmentation results were then merged with the original MPM images to train a classification network (AlexNet) for automated Gleason grading. The developed method achieved an overall pixel accuracy of 92.3% with a mean F1 score of 0.839 for epithelium segmentation. By merging the segmentation results with the MPM images, the accuracy of Gleason grading was improved from 72.42% to 81.13% in hold‐out test set. Our results suggest that MPM in combination with deep learning holds the potential to be used as a fast and powerful clinical tool for PCa diagnosis.  相似文献   

11.
滇西南地区拥有丰富的丛生竹林景观和珍稀特有竹种资源,但竹资源分布储量不清、监测技术缺乏等问题很大程度限制了竹资源开发与利用。基于Sentinel-2A影像数据,采用反向传播神经网络、支持向量机、随机森林三种机器学习分类方法进行沧源县丛生竹林信息提取及精度评价,利用Google Earth影像和DEM数据对竹资源分布的空间和地形特征进行了分析。结果表明,随机森林分类精度优于支持向量机和反向传播神经网络,分类总体精度达90%,Kappa系数达0.87,竹林用户精度达81%。沧源县共有竹林138.07 km2,主要分布于城镇村庄、道路、水系和耕地周边,以四旁竹和防护竹林为主,采用Sentinel-2A10 m的分辨率很好地提取了空间上分布分散的丛生竹林。沧源县竹林主要分布在海拔900~2000 m,坡度范围大都位于缓坡和斜坡。研究结果可为沧源县竹资源开发利用提供数据支持,研究方法可作为大型丛生竹遥感监测的参考。  相似文献   

12.

Background

The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data.

Results

In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification.

Conclusions

The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes by using deep learning on high-dimensional and small-scale biology data.
  相似文献   

13.
掌握森林内树木种类及其分布情况对研究森林生态系统具有重要意义.为推广国产高分数据在森林树种分类方面的应用,同时探究不同时相、分类特征及分类器的组合对树种分类结果的影响,本研究利用3景高分二号影像构建了3种单时相和4种多时相,通过多尺度分割、C5.0特征优选及支持向量机(SVM)和随机森林(RF)两种分类器分别实现了不同时相及特征维度下面向对象的8个树种的分类,最终取得了总体精度在63.5~83.5%、Kappa系数在0.57~0.81的良好结果.结果表明: 时相的选择会对分类结果产生较大的影响,其中,基于多时相的结果往往优于单时相,多时相下不同影像组合间以及单时相间亦存在明显的精度差异;特征优选会对分类精度的提升起到积极作用,应予以足够重视;SVM在不同时相及特征维度下的表现均较为稳定,在单时相及分类特征难以直接区分树种的情况下应优先使用SVM,但使用SVM时应注意其易发生过拟合;RF不易发生明显的过拟合,但其对分类特征的质量依赖较大,并倾向于在良好的影像组合下取得较为优异的结果.  相似文献   

14.
In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011–2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.  相似文献   

15.
Zagros forests in western Iran have widely been destroyed because of various reasons. This study was performed to provide the land cover and forest density maps in Zagros forests of Khuzestan province using Sentinel-2, Google Earth and field data. The forest boundary in Khuzestan province was digitized in Google Earth. Sentinel-2 satellite images were provided for the study area. One 1:25000 index sheet of Iranian Mapping Organization (IMO) was selected as pilot area in the province. Sentinel-2 image of the pilot area was classified using different supervised classification algorithms to select the best algorithm for land cover mapping in Khuzestan province. In addition, to evaluate the accuracy of Google Earth data, field sampling was performed using random plots in different land covers. Field data of forest plots were applied to investigate tree canopy cover percent (forest density), as well. Classification of Sentinel-2 image in Zagros area of Khuzestan province was done using the best algorithm and the land cover was obtained. The forest density map was also obtained using a linear regression model between tree canopy cover percent (obtained from field plots) and normalized difference vegetation index (NDVI) (obtained from NDVI map). Finally, the accuracy of land cover map was assessed by some square plots on Google Earth. Results demonstrated that support vector machine (SVM) algorithm had the highest accuracy for land cover mapping. Results also showed that Google Earth images had a good accuracy in the Zagros forests of Khuzestan province. Results demonstrated that NDVI has been a good predicator to estimate tree canopy cover in the study area. Based on results, an area of 443,091.22 ha is covered by Zagros forests in Khuzestan province. Results of accuracy assessment of the land cover map showed the good accuracy of this map in Khuzestan province (overall accuracy: 91% and kappa index: 0.83). For optimum management of Zagros forests, it is suggested that the land cover and forest density mapping will be performed using SVM algorithm, NDVI, and Sentinel-2 satellite images in Zagros forests of Khuzestan province in the certain periods.  相似文献   

16.
Increasing awareness of the issue of deforestation and degradation in the tropics has resulted in efforts to monitor forest resources in tropical countries. Advances in satellite-based remote sensing and ground-based technologies have allowed for monitoring of forests with high spatial, temporal and thematic detail. Despite these advances, there is a need to engage communities in monitoring activities and include these stakeholders in national forest monitoring systems. In this study, we analyzed activity data (deforestation and forest degradation) collected by local forest experts over a 3-year period in an Afro-montane forest area in southwestern Ethiopia and corresponding Landsat Time Series (LTS). Local expert data included forest change attributes, geo-location and photo evidence recorded using mobile phones with integrated GPS and photo capabilities. We also assembled LTS using all available data from all spectral bands and a suite of additional indices and temporal metrics based on time series trajectory analysis. We predicted deforestation, degradation or stable forests using random forest models trained with data from local experts and LTS spectral-temporal metrics as model covariates. Resulting models predicted deforestation and degradation with an out of bag (OOB) error estimate of 29% overall, and 26% and 31% for the deforestation and degradation classes, respectively. By dividing the local expert data into training and operational phases corresponding to local monitoring activities, we found that forest change models improved as more local expert data were used. Finally, we produced maps of deforestation and degradation using the most important spectral bands. The results in this study represent some of the first to combine local expert based forest change data and dense LTS, demonstrating the complementary value of both continuous data streams. Our results underpin the utility of both datasets and provide a useful foundation for integrated forest monitoring systems relying on data streams from diverse sources.  相似文献   

17.
Papua New Guinea (PNG) is an extensively forested country. Recent research suggests that despite commencing a trajectory of deforestation and degradation later than many counties in the Asia–Pacific region, PNG is now undergoing comparable rates of forest change. Here we explore the bioregional distribution of changes in the forest estate over the period 1972–2002 and examine their implications for forest protection. This is undertaken through the development of a novel bioregional classification of the country based on biogeographic regions and climatic zones, and its application to existing forest cover and forest‐cover change data. We found that degradation and deforestation varied considerably across the 11 defined biogeographic regions. We report that the majority of deforestation and degradation has occurred within all the lowland forests, and that it is these forests that have the greatest potential for further losses in the near term. The largest percentage of total change occurred in the east of PNG, in the islands and lowlands of the Bismarck, D'Entrecasteaux, East Papuan Islands and in the South‐East Papua–Oro region. The only region with a significant highlands component to undergo deforestation at a comparable magnitude to the islands and lowland regions was the Huon Peninsula and Adelbert region. Significant changes have also occurred at higher elevations, especially at the interface of subalpine grasslands and upper montane forests. Lower montane forests have experienced proportionally less change, yet it is these forests that constitute the majority of forests enclosed within the protected area system. We find that protected areas are not convincingly protecting either representative areas of PNG's ecosystems, nor the forests within their borders. We conclude by suggesting a more expansive and integrated approach to managing the national forest estate.  相似文献   

18.
[目的]具有复杂背景的蝴蝶图像前背景分割难度大.本研究旨在探索基于深度学习显著性目标检测的蝴蝶图像自动分割方法.[方法]应用DUTS-TR数据集训练F3Net显著性目标检测算法构建前背景预测模型,然后将模型用于具有复杂背景的蝴蝶图像数据集实现蝴蝶前背景自动分割.在此基础上,采用迁移学习方法,保持ResNet骨架不变,利...  相似文献   

19.
Tropical dry forests are more threatened, less protected and especially susceptible to deforestation. However, most deforestation research focuses on tropical rain forests. We analyzed spatial and temporal changes in land cover from 1972 through 2005 at Chatthin Wildlife Sanctuary (CWS), a tropical dry forest in Myanmar (Burma). CWS is one of the largest protected patches of tropical dry forest in Southeast Asia and supports over half the remaining wild population of the endangered Eld’s deer. Between 1973 and 2005, 62% of forest was lost at an annual rate of 1.86% in the area, while forest loss inside CWS was only 16% (0.45% annually). Based on trends found during our study period, dry forests outside CWS would not persist beyond 2019, while forests inside CWS would persist for at least another 100 years. Analysis of temporal deforestation patterns indicates the highest rate of loss occurred between 1992 and 2001. Conversion to agriculture, shifting agriculture, and flooding from a hydro-electric development were the main deforestation drivers. Fragmentation was also severe, halving the area of suitable Eld’s deer habitat between 1973 and 2001, and increasing its isolation. CWS protection efforts were effective in reducing deforestation rates, although deforestation effects extended up to 2 km into the sanctuary. Establishing new protected areas for dry forests and finding ways to mitigate human impacts on existing forests are both needed to protect remaining dry forests and the species they support.  相似文献   

20.
Forest transition is a process of overall forest cover from net loss to net gain over time. Forest transition especially the process after turning point from deforestation to reforestation has inspired lots of researches for its potential to improve environmental services. China has undergone forest transition since the 1980s. However, in tropical China, deforestation was still existed, while the overall forest cover increased greatly. To investigate this issue, we conducted this research by classifying overall forest into natural forest and plantation in Xishuangbanna, which has undergone forest transition and deforestation and overall forest cover increasing. We found that natural forest continues decreasing while overall forest cover increasing and plantation expansion in forest transition. The forest transition in Xishuangbanna was found to be a tree cover transition, which was mainly contributed by large plantation expansion. In Xishuangbanna, deforestation is still undergoing after its overall forest cover transition occurred in 1988. The general overall forest definition used by forest transition will not be able to recognize deforestation when natural forests are displaced by plantations because the overall forest cover remains unchanged or even increasing. We therefore recommended to classify forest types in forest transition researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号