首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundTargeted protein degradation relies on inducing proximity between an E3 ubiquitin ligase and a target protein, and subsequent proteasomal degradation of the latter. Biophysical methods allow the measurement of the ternary complex formation by recombinant target and E3 ligase proteins in the presence of molecular glues and bifunctional degraders. The development of new chemotypes of degraders mediating ternary complex formation of unknown dimensions and geometries requires the use of different biophysical approaches.MethodsThe TR-FRET and AlphaLISA platforms have been applied to study molecular glues and bifunctional degraders. The performance of the label-based proximity assays was compared with the BLI method, which is a label-free, sensor-based approach.ResultsWe present and compare two commonly used assays to monitor proximity induction, AlphaLISA and TR-FRET. The LinkScape system consisting of the CaptorBait peptide and the CaptorPrey protein is a novel method of protein labeling compatible with TR-FRET assay.ConclusionsThe TR-FRET and AlphaLISA proximity assays enable detection of ternary complexes formed between an E3 Ligase, a target protein and a small molecule degrader. Experiments with different chemotypes of GSPT1 degraders showed that ALphaLISA was more susceptible to chemotype-dependent interference than TR-FRET assay.General significanceThe discovery and optimization of small-molecule inducers of ternary complexes is greatly accelerated by using biophysical assays. The LinkScape-based TR-FRET assay is an alternative to antibody-based proximity assays due to the CaptorPrey's subnanomolar affinity to the CaptorBait-tagged protein target, and the 10-fold lower molecular weight of the CaptorPrey protein compared to the antibody.  相似文献   

2.
3.
Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.  相似文献   

4.
Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases.  相似文献   

5.
Parkinson's disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD.  相似文献   

6.
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.  相似文献   

7.
MDM2, a ubiquitin E3-ligase of the RING family, has a key role in regulating p53 abundance. During normal non-stress conditions p53 is targeted for degradation by MDM2. MDM2 can also target itself and MDMX for degradation. MDMX is closely related to MDM2 but the RING domain of MDMX does not possess intrinsic E3-ligase activity. Instead, MDMX regulates p53 abundance by modulating the levels and activity of MDM2. Dimerization, mediated by the conserved C-terminal RING domains of both MDM2 and MDMX, is critical to this activity. Here we report the crystal structure of the MDM2/MDMX RING domain heterodimer and map residues required for functional interaction with the E2 (UbcH5b). In both MDM2 and MDMX residues C-terminal to the RING domain have a key role in dimer formation. In addition we show that these residues are part of an extended surface that is essential for ubiquitylation in trans. This study provides a molecular basis for understanding how heterodimer formation leads to stabilization of MDM2, yet degradation of p53, and suggests novel targets for therapeutic intervention.  相似文献   

8.
9.
Negative regulation of p53 in normal, unstressed cells maintains levels of this tumor suppressor below a threshold for cell cycle arrest or apoptosis, and is rapidly reversed in the face of cellular stresses to permit p53 response. Recently, we created a new mouse and stem cell model by knock-in addition of an epitope tag at Trp53. Biochemical purification of endogenous, tagged p53-protein complexes from mouse embryonic stem cells, and peptide analysis by mass spectrometry, revealed a new RING-domain E3-ubiquitin ligase TRIM24 that targets p53 for degradation. Depletion of TRIM24, formerly named TIF1α, in tumor-derived cells induces p53-dependent apoptosis. In Drosophila, bonus is a single copy gene homologous to the mammalian Tif1 family. Mosaic deletion of bonus induces cell death in vivo, which is rescued by depletion of D-p53. Bonus is the first identified regulator of p53 protein levels in Drosophila, which lacks an ortholog of Mdm2. TRIM24/bonus may be the ancestral precursor of the large group of mammalian E3-ligases that target p53 for ubiquitin modification. Understanding the specific roles that these numerous E3-ligases have in the hierarchy of p53-regulation remains a challenge for the field. We discuss various scenarios for selectivity in choice of E3-ligase targeting p53 for degradation.  相似文献   

10.
Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N-terminal Ring-domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3-ligase activity. We solved the crystal structure of the Ring-Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring-domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N-terminal arm of Ring1b that embraces the Bmi1 Ring-domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer.  相似文献   

11.
Amyloid precursor-like protein 2 (APLP2) is a member of a protein family related to the amyloid precursor protein, which is implicated in Alzheimer's disease. Little is known about the physiological function of this protein family. The adenovirus E3/19K protein binds to major histocompatibility complex (MHC) class I antigens in the endoplasmic reticulum, thereby preventing their transport to the cell surface. In cells coexpressing E3/19K and the MHC K(d) molecule, K(d) is associated with E3/19K and two cellular protein species with masses of 100 and 110 kDa, termed p100/110. Interestingly, p100/110 are released from the complex upon the addition of K(d)-binding peptides, suggesting a role for these proteins in peptide transfer to MHC molecules. Here we demonstrate by microsequencing, reactivity with APLP2-specific antibodies, and comparison of biochemical parameters that p100/110 is identical to human APLP2. We further show that the APLP2/K(d) association does not require the physical presence of E3/19K. Thus, APLP2 exhibits an intrinsic affinity for the MHC K(d) molecule. Similar to the binding of MHC molecules to the transporter associated with antigen processing, complex formation between APLP2 and K(d) strictly depends upon the presence of beta(2)-microglobulin. Conditions that prolong the residency of K(d) in the endoplasmic reticulum lead to a profound increase of the association and a drastic reduction of APLP2 transport. Therefore, this unexpected interplay between these unrelated molecules may have implications for both MHC antigen and APLP2 function.  相似文献   

12.
Repair of DNA double-strand breaks by the non-homologous end-joining pathway (NHEJ) requires a minimal set of proteins including DNA-dependent protein kinase (DNA-PK), DNA-ligase IV and XRCC4 proteins. DNA-PK comprises Ku70/Ku80 heterodimer and the kinase subunit DNA-PKcs (p460). Here, by monitoring protein assembly from human nuclear cell extracts on DNA ends in vitro, we report that recruitment to DNA ends of the XRCC4-ligase IV complex responsible for the key ligation step is strictly dependent on the assembly of both the Ku and p460 components of DNA-PK to these ends. Based on co-immunoprecipitation experiments, we conclude that interactions of Ku and p460 with components of the XRCC4-ligase IV complex are mainly DNA-dependent. In addition, under p460 kinase permissive conditions, XRCC4 is detected at DNA ends in a phosphorylated form. This phosphorylation is DNA-PK-dependent. However, phosphorylation is dispensable for XRCC4-ligase IV loading to DNA ends since stable DNA-PK/XRCC4-ligase IV/DNA complexes are recovered in the presence of the kinase inhibitor wortmannin. These findings extend the current knowledge of the assembly of NHEJ repair proteins on DNA termini and substantiate the hypothesis of a scaffolding role of DNA-PK towards other components of the NHEJ DNA repair process.  相似文献   

13.
14.
15.
16.
17.
Treatment with divalent metal ions such as cobalt (Co(2+)) or nickel (Ni(2+)) result in the stabilization of hypoxia-inducible factor-1alpha (HIF1alpha). Recently, HIF1alpha was shown to be ubiquitinated by an E3-ligase complex and be subsequently targeted for proteasomal degradation. In this study, we demonstrated that Co(2+) and Ni(2+) specifically bind to cullin-2. Mutant analysis revealed that cullin-2 possesses at least three sites for the binding. Furthermore, fluorescence spectroscopy revealed that only Co(2+) and Ni(2+) have the binding activity to cullin-2, but other metal ions, including Cu(2+), Ca(2+), Mg(2+), Mn(2+), and Zn(2+), did not. Finally, we found that Co(2+) and Ni(2+) do not bind to any components of the E3-ligase other than cullin-2, suggesting that cullin-2 is a key target of Co(2+) and Ni(2+). Interestingly, Co(2+) did not affect the complex formation of the ligase, suggesting that the metal binding to cullin-2 affects the function, but not the assembly of the E3-ligase.  相似文献   

18.
With the impressive growth in gene sequence data that has become available, recombinant proteins represent an increasingly vast source of molecular components, with unique functional and structural properties, for use in biotechnological applications and devices. To facilitate the use, manipulation, and integration of such molecules into devices, a controllable method for their chemical modification was developed. In this approach, a trifunctional labeling reagent first recognizes and binds a His-tag on the target protein's surface. After binding, a photoreactive group on the trifunctional molecule is triggered to create a covalent linkage between the reagent and the target protein. The third moiety on the labeling reagent can be varied to bring unique chemical functionality to the target protein. This approach provides: (1) specificity in that only His-tagged targets are modified, (2) regio-specific control in that the target is modified proximal to the His-tag, the position of which can be varied, and (3) stoichiometric control in that the number modifications is limited by the binding capacity of the His-tag. Two such labeling reagents were designed, synthesized, and used to modify both N- and C-terminally His-tagged versions of the enzyme murine dihydrofolate reductase (mDHFR). The first reagent biotinylated the enzyme,while the second served to attach an oligonucleotide to yield a protein-DNA conjugate. In all cases, modification in this manner brings new functionality to the protein while leaving the enzymatic activity intact. The protein-DNA conjugate was used to specifically immobilize the active enzyme through DNA hybridization onto polystyrene microspheres, a step toward creating a functional protein microarray.  相似文献   

19.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号