首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

2.
Aspalathus linearis (Burm. f.) R. Dahlgren (rooibos) is endemic to the Fynbos Biome of South Africa, which is an internationally recognized biodiversity hot spot. Rooibos is both an invaluable wild resource and commercially cultivated crop in suitable areas. Climate change predictions for the region indicate a significant warming scenario coupled with a decline in winter rainfall. First estimates of possible consequences for biodiversity point to species extinctions of 23% in the long term in the Fynbos Biome. Bioclimatic modelling using the maximum entropy method was used to develop an estimate of the realized niche of wild rooibos and the current geographic distribution of areas suitable for commercially production. The distribution modelling provided a good match to the known distribution and production area of A. linearis. An ensemble of global climate models that assume the A2 emissions scenario of high energy requirements was applied to develop possible scenarios of range/suitability shift under future climate conditions. When these were extrapolated to a future climate (2041–2070) both wild and cultivated tea exhibited substantial range contraction with some range shifts southeastwards and upslope. Most of the areas where range expansion was indicated are located in existing conservation areas or include conservation worthy vegetation. These findings will be critical in directing conservation efforts as well as developing strategies for farmers to cope with and adapt to climate change.  相似文献   

3.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

4.
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species’ climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species’ realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species’ ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change.  相似文献   

5.
Cereal crops are significant contributors to global diets. As climate change disrupts weather patterns and wreaks havoc on crops, the need for generating stress-resilient, high-yielding varieties is more urgent than ever. One extremely promising avenue in this regard is to exploit the tremendous genetic diversity expressed by the wild ancestors of current day crop species. These crop wild relatives thrive in a range of environments and accordingly often harbor an array of traits that allow them to do so. The identification and introgression of these traits into our staple cereal crops can lessen yield losses in stressful environments. In the last decades, a surge in extreme drought and flooding events have severely impacted cereal crop production. Climate models predict a persistence of this trend, thus reinforcing the need for research on water stress resilience. Here we review: (i) how water stress (drought and flooding) impacts crop performance; and (ii) how identification of tolerance traits and mechanisms from wild relatives of the main cereal crops, that is, rice, maize, wheat, and barley, can lead to improved survival and sustained yields in these crops under water stress conditions.  相似文献   

6.
The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES‐Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (?22.1% and ?35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES‐Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system.  相似文献   

7.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   

8.
Studies examining species range shifts in the face of climate change have consistently found that response patterns are complex and varied, suggesting that ecological traits might be affecting species response. However, knowledge of how the traits of a species determine its response to climate change is still poorly understood. Here we investigate the role of species-specific climate niche breadth in forecasting bumblebee (Bombus spp.) responses to regional climate warming in the Cantabrian Range (north-western Iberian Peninsula). Climate niche breadth was defined using known data for occurrences of specific species at their continental (i.e., European) scale of distribution. For each bumblebee species, climate niche breadth was found to be related to (1) the elevational range shifts of species between their historical (1988–1989) and recent (2007–2009) distribution and (2) the variation in the climatic conditions of the localities they inhabited (i.e., the local climate space) between both study periods. Our results show a strong relationship between climate niche breadth, particularly thermal niche breadth, and the response of bumblebee species to climate warming, but only when this response was determined as variations in local climate space. The main conclusions of our work are thus twofold. First, variations in the climatic conditions underlying range shifts are useful in making accurate assessments of the impact of climate change on species distributions. Second, climate niche breadth is a particularly informative ecological trait for forecasting variations in species responses to climate change.  相似文献   

9.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

10.
Despite growing evidence that biotic interactions limit the distribution of species and their potential redistribution under climate change, the recent surge of interest in niche conservatism has predominantly focused on the Grinellian (abiotic) niche, whereas few studies have attempted to quantify potential lability in the Eltonian (biotic or trophic) niche. Here, we test for conservatism in the Eltonian niche of 32 freshwater fish species between their introduced and native ranges from 435 populations across the globe. We used stable isotope data to quantify niche shifts along the horizontal (δ13C: indicating the origin of the resources consumed) and vertical (δ15N: describing the trophic position) dimensions of the isotopic niche, as well as shifts in overall isotopic niche breadth. Using an assemblage centroid standardized isotope vector analysis and controlling for phylogenetic relatedness among species, we demonstrated that introduced freshwater fishes exhibited flexibility in both resource use and trophic position that was beyond levels of natural variability observed in their native ranges. By contrast, niche breadth showed variability only within the limits recorded in native populations and varied independently from shifts in mean isotopic niche positions. Across all species and introduction histories, we found a consistent shift towards more balanced acquisition of resources with mixed origins and at intermediate trophic positions, suggesting a general mechanism by which fish species successfully establish into recipient communities. The mechanisms that promote or inhibit species from shifting their Eltonian niche remains unknown, but trophic flexibility is likely to contribute to both the success and the ecological impacts of invasive species and range shifts of native species under future global change.  相似文献   

11.
There are more than 50000 known edible plants in the world, yet two‐thirds of global plant‐derived food is provided by only three major cereals – maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm‐season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture‐stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought‐after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its ‘orphan crop’ status. This review presents the past, present and future of an ancient grain with a potential beyond its size.  相似文献   

12.
Rice is the staple food for more than fifty percent of the world's population, and is therefore an important crop. However, its production is hindered by several biotic and abiotic stresses. Although rice is the only crop that can germinate even in the complete absence of oxygen (i.e. anoxia), flooding (low oxygen) is one of the major causes of reduced rice production. Rice germination under anoxia is characterized by the elongation of the coleoptile, but leaf growth is hampered. In this work, a comparative proteomic approach was used to detect and identify differentially expressed proteins in the anoxic rice coleoptile compared to the aerobic coleoptile. Thirty-one spots were successfully identified by MALDI-TOF MS analysis. The majority of the identified proteins were related to stress responses and redox metabolism. The expression levels of twenty-three proteins and their respective mRNAs were analyzed in a time course experiment.  相似文献   

13.
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.  相似文献   

14.
If climate change affects pollinator‐dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature‐induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change.  相似文献   

15.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

16.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard Phrynosoma platyrhinos, a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post‐LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.  相似文献   

17.
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

18.
Rice is the most important crop species on earth, providing staple food for 70% of the world's human population. Over the past four decades, successes in classical breeding, fertilization, pest control, irrigation and expansion of arable land have massively increased global rice production, enabling crop scientists and farmers to stave off anticipated famines. If current projections for human population growth are correct, however, present rice yields will be insufficient within a few years. Rice yields will have to increase by an estimated 60% in the next 30 years, or global food security will be in danger. The classical methods of previous green revolutions alone will probably not be able to meet this challenge, without being coupled to recombinant DNA technology. Here, we focus on the promise of these modern technologies in the area of nitrogen acquisition in rice, recognizing that nitrogen deficiency compromises the realization of rice yield potential in the field more than any other single factor. We summarize rice-specific advances in four key areas of research: (1). nitrogen fixation, (2). primary nitrogen acquisition, (3). manipulations of internal nitrogen metabolism, and (4). interactions between nitrogen and photosynthesis. We develop a model for future plant breeding possibilities, pointing out the importance of coming to terms with the complex interactions among the physiological components under manipulation, in the context of ensuring proper targeting of intellectual and financial resources in this crucial area of research.  相似文献   

19.
Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft‐sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north‐westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8–7.3 km yr?1 interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr?1), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in benthic biodiversity.  相似文献   

20.
Coincident with recent global warming, species have shifted their geographic distributions to cooler environments, generally by moving along thermal axes to higher latitudes, higher elevations or deeper waters. While these shifts allow organisms to track their thermal niche, these three thermal axes also covary with non-climatic abiotic factors that could pose challenges to range-shifting plants and animals. Such novel abiotic conditions also present an unappreciated pitfall for researchers – from both empirical and predictive viewpoints – who study the redistribution of species under global climate change. Climate, particularly temperature, is often assumed to be the primary abiotic factor in limiting species distributions, and decades of thermal biology research have made the correlative and mechanistic understanding of temperature the most accessible and commonly used response to any abiotic factor. Receiving far less attention, however, is that global gradients in oxygen, light, pressure, pH and water availability also covary with latitude, elevation, and/or ocean depth, and species show strong physiological and behavioral adaptations to these abiotic variables within their historic ranges. Here, we discuss how non-climatic abiotic factors may disrupt climate-driven range shifts, as well as the variety of adaptations species use to overcome abiotic conditions, emphasizing which taxa may be most limited in this capacity. We highlight the need for scientists to extend their research to incorporate non-climatic, abiotic factors to create a more ecologically relevant understanding of how plants and animals interact with the environment, particularly in the face of global climate change. We demonstrate how additional abiotic gradients can be integrated into global climate change biology to better inform expectations and provide recommendations for addressing the challenge of predicting future species distributions in novel environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号