首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The influence of three margin strip treatments (wildflower strips, grass strips and spontaneous vegetation) adjacent to apple orchards on the biological control of Dysaphis plantaginea Passerini (Hemiptera: Aphididae) was compared during two consecutive years. The wildflower strips provided the highest amount of floral resources. Within the margin strips, hoverflies responded positively to higher resource provisioning whereas ladybird abundance did not differ between strip treatments. Within the orchards, the presence of parasitoids, hoverflies, and ladybirds in aphid colonies and the predation of sentinel aphids were not significantly affected by the adjacent strip treatments. The number of natural enemies observed in aphid colonies was mainly driven by aphid number. Aphid numbers were higher close to the margin strips suggesting that aphid colonization from orchard edges may counteract the positive effect of wildflower strips on natural enemy abundance and on a reduction of aphid infestation. The results confirm the positive influence of floral resource provisioning by wildflower strips on the conservation of aphid natural enemies, but also suggest that effects of wildflower strips on aphid regulation inside orchards are not very strong compared with spontaneous vegetation naturally occurring in the margins.  相似文献   

3.
Within-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.  相似文献   

4.
Establishing wildflower strips has been suggested as an effective measure to promote pollination services, pest control or general insect biodiversity, but little is known about the integration of these different objectives when selecting flower seed mixtures. In ten agricultural landscapes in the Netherlands, we established a wildflower strip (0.4 – 4.9 ha) with half of each strip sown with a mixture targeting longer-tongued pollinators and the other half sown with a mixture targeting shorter-tongued pollinators and natural enemies. We determined establishment success of sown wildflowers and evaluated the attractiveness of the established flower communities to multiple functional groups of flower visitors: bumblebees (long-tongued pollinators), hoverflies (short-tongued pollinators and natural enemies), and butterflies and total flower-visitor richness (indicators of wider biodiversity values). Bumblebees clearly preferred the pollinator-targeted seed mixture and were positively associated with cover of Fabaceae and negatively with Apiaceae. Hoverflies consistently preferred the natural enemy mixture and were positively associated with Apiaceae. The other target groups displayed no clear responses to seed mixture type but instead were associated with local flower richness within strips. Across sites, responses of flower-visitors to sown mixture types did not depend on wildflower strip size, proportion of surrounding semi-natural habitat, or flower variables. However, all flower-visitors except butterflies increased with increasing established cover or richness of (sown) flower species across sites. Our results suggest that, although species-rich wildflower strips may benefit several species groups, maximising different objectives involves trade-offs between functional groups that prefer short- or long-corolla flowers. Furthermore, our study suggests that sowing a wildflower mixture does not necessarily result in a vegetation with the same composition as the seed mixture as species may establish poorly or not at all. Selection of flower species for seed mixtures should therefore, in addition to insect target group, take the establishment characteristics of plant species into account.  相似文献   

5.
The population decline of the European hare (Lepus europaeus) in Switzerland is generally attributed to low leveret survival. A significant intensification of agricultural practices led to a landscape transformation that reduced leveret survival by increasing negative factors such as predation pressure. Habitat improvement by means of wildflower strips has yielded some positive effects on European hare population trends, probably by improving food supply and providing year-round cover from predation. For this study, remote cameras were used to examine relationships between landscape and wildflower strip variables and the frequency of predator visits to wildflower strips as well as the probability of them visiting core areas of the strips. Of a total of 1586 visits of potential predators to wildflower strips, 91% were mammals and 9% were birds. Predators were more frequently observed at the edges of the wildflower strips than in their cores (72% of visits by mammalian predators and 76% by avian predators were at the edge). The results revealed that the frequency of observing predators was negatively correlated with adjacent crop height and the distance of the wildflower strip from settlements, roads and forests or hedgerows. The probability of a predator penetrating the core of the wildflower strip was negatively correlated with the vegetation cover, especially with the cover of wood, herbaceous plant species and teasel (Dipsacus fullonum). Appropriate management of wildflower strips by considering their spatial placement, creating low margin to surface area ratios and promoting heterogeneous wildflower structure can thus lead to reduced predator pressure on leverets as well as on ground-nesting birds.  相似文献   

6.
Abstract 1. Intra‐specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non‐hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra‐guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.  相似文献   

7.
8.
张旭珠  张鑫  宋潇  宇振荣  刘云慧 《生态学报》2018,38(23):8442-8454
通过管理半自然生境提高农田中天敌多样性及农田害虫的生物控制效率是当前生态农业研究的基本问题之一。为探讨不同类型半自然植被边界带对相邻麦田地表天敌的发生以及对小麦蚜虫生物控制潜力的影响,在北京顺义区赵全营镇采用陷阱法调查了不同类型植被边界带(人工林地、人工种植草带、自然演替草带)相邻的小麦田中,距离边界0,15 m和30 m处步甲和蜘蛛两类重要地表天敌的多度分布及小麦田蚜虫发生情况,同时分析了边界带植被群落结构对步甲和蜘蛛群落分布的影响。结果表明:人工林地相邻的小麦田中维持了显著较高的步甲、蜘蛛和蚜虫发生密度;不同类型植被边界带相邻小麦田中步甲和蜘蛛群落组成显著不同,植被边界带宽度以及乔木层盖度是影响相邻麦田步甲和蜘蛛群落分布的主要因子;距离植被边界带不同取样界面处,不同迁移方向的步甲和蜘蛛的活动密度无显著性差异;与林地相邻的麦田中,蜘蛛活动密度从农田边界向农田内部处依次降低,与人工种植草带以及自然演替草带相邻的麦田中,农田边界处蜘蛛的活动密度显著高于农田内部。研究显示,半自然植被边界带与麦田交界处维持了较高的蜘蛛活动密度,并具有向农田内部扩散的趋势,然而,并非高天敌密度就意味着低害虫发生率,深入研究天敌群落与害虫发生关系及其影响因素是未来天敌保护和害虫生物防治的重要方面。同时,因为不同类型植被边界带维持的天敌群落具有高度异质性,未来的研究需要充分考虑不同类型植被边界带对天敌维持的作用,以及不同类型生境界面地表天敌的活动规律。  相似文献   

9.
Symbiotic bacteria in herbivorous insects can have strong beneficial impacts on their host's survival, including conferring resistance to natural enemies such as parasitoid wasps or pathogens, while also imposing energetic costs on the host, resulting in cost‐benefit trade‐offs. Whether these trade‐offs favour the hosting of symbionts depends on the growth environment of the herbivore. Long‐term experimental grassland studies have shown that increasing plant species richness leads to an increased diversity of associated herbivores and their natural enemies. Such a change in natural enemy diversity, related to changes in plant diversity, could also drive changes in the community of symbionts hosted by the herbivorous insects. Aphids are one model system for studying symbionts in insects, and effects of host‐plant species and diversity on aphid‐symbiont interactions have been documented. Yet, we still understand little of the mechanisms underlying such effects. We review the current state of knowledge of how biodiversity can impact aphid‐symbiont communities and the underlying drivers. Then, we discuss this in the framework of sustainable agriculture, where increased plant biodiversity, in the form of wildflower strips, is used to recruit natural enemies to crop fields for their pest control services. Although aphid symbionts have the potential to reduce biological control effectiveness through conferring protection for the host insect, we discuss how increasing plant and natural enemy biodiversity can mitigate these effects and identify future research opportunities. Understanding how to promote beneficial interactions in ecological systems can help in the development of more sustainable agricultural management strategies.  相似文献   

10.
Ephemeral cropping systems are characterized by frequent disturbances of ecological processes, which may compromise the conservation of plant and arthropod diversity and the ecosystem services they may provide. Conservation biological control practices include habitat manipulations that provide non‐pest resources and selectively enhance natural enemies' effectiveness. This study, conducted in eight commercial fields of organically grown tomato, compared the effectiveness of sown flower strips with semi‐natural margins in regulating natural enemy abundance, biocontrol, and crop damage. During repeated visits, the abundance of different arthropod groups was recorded. Crop surveys included measurement of aphid abundance, parasitism, and leaf and fruit damage from sap‐sucking and lepidopteran pests. Semi‐natural habitats were associated with higher vegetation diversity, but natural enemies were more strongly associated with sown strips during flowering. Sap‐sucking pests were always recorded in higher abundance in flower strips, but crop damage in the plots adjacent to these strips was lower, suggesting that these strips may act as a trap‐crop. The inclusion of floral supplements enhanced the parasitism rate of aphids in the crop, and reduced the rate of increase of lepidopteran‐caused foliar damage with time. Early in the growing season, semi‐natural strips showed significantly lower levels of crop damage and aphid counts, suggesting that these habitats may be important during early crop colonization by natural enemies. These results indicate that the inclusion of flower strips enhances the conservation of arthropod functional diversity in ephemeral crops, and that diverse mechanisms are important for controlling different pests. However, the efficacy of habitat manipulation is likely to be greater when it is complemented with the conservation of diverse semi‐natural vegetation in the pre‐existing field margin.  相似文献   

11.
Agricultural landscapes rich in natural and semi-natural habitats promote biodiversity and important ecosystem services for crops such as pest control. However, semi-natural habitats may fail to deliver these services if agricultural pests are disconnected from the available pool of natural enemies, as may be the case with invasive species. This study aimed to provide insights into the relationship between landscape complexity and the abundance of the recently established invasive pest species Drosophila suzukii and a group of natural enemies (parasitoid wasps), which contain species that parasitize D. suzukii in native and invaded ecosystems. The importance of landscape complexity was examined at two spatial scales. At the field scale, the response to introduction of wildflower strips was analysed, while the relationship with forest cover was assessed at the landscape scale. Half of the surveys were done next to blueberry crops (Vaccinium corymbosum), the other half was done in landscapes without fruit crops to examine effects of D. suzukii host presence. As expected, the number of observed parasitoid wasps increased with amount of forest surrounding the blueberry fields, but the number of D. suzukii individuals likewise increased with forest cover. Establishment of wildflower strips did not significantly affect the abundance of D. suzukii or parasitoid wasps and insect phenology was similar in landscapes with and without blueberry crops. This suggests that D. suzukii is enhanced by landscape complexity and is largely unlinked from the species group that, in its native range, hosts key natural enemies. Although management practices that rely on enhancing natural enemies through habitat manipulations can contribute to the long-term stability of agroecosystems and to control agricultural pests, other control measures may still be necessary in the short term to counteract the benefits obtained by D. suzukii from natural habitats.  相似文献   

12.
Climate change can have diverse effects on natural enemies of pest species. Here we review these effects and their likely impacts on pest control. The fitness of natural enemies can be altered in response to changes in herbivore quality and size induced by temperature and CO2 effects on plants. The susceptibility of herbivores to predation and parasitism could be decreased through the production of additional plant foliage or altered timing of herbivore life cycles in response to plant phenological changes. The effectiveness of natural enemies in controlling pests will decrease if pest distributions shift into regions outside the distribution of their natural enemies, although a new community of enemies might then provide some level of control. As well as being affected by climate through host plants and associated herbivores, the abundance and activity of natural enemies will be altered through adaptive management strategies adopted by farmers to cope with climate change. These strategies may lead to a mismatch between pests and enemies in space and time, decreasing their effectiveness for biocontrol. Because of the diverse and often indirect effects of climate change on natural enemies, predictions will be difficult unless there is a good understanding of the way environmental effects impact on tritrophic interactions. In addition, evolutionary changes in both hosts and natural enemies might have unexpected consequences on levels of biocontrol exerted by enemies. We consider interactions between the pest light brown apple moth and its natural enemies to illustrate the type of data that needs to be collected to make useful predictions.  相似文献   

13.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

14.
Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8–75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.  相似文献   

15.
Sown wildflower strips are increasingly being established in Europe for enhancing arthropod conservation and the provision of ecosystem services, including biotic pollination and natural pest control. Here we use floral traits to identify different plant functional effect groups. Floral resources were provided in four experimental levels characterised by a cumulatively increasing flower trait diversity and vegetation stand complexity. The first level consisted of a bare control strip, whilst in each subsequent level three wildflower species with different functional traits were added (Level 0: control; Level 1: three Apiaceae species; Level 2: three Apiaceae and three Fabaceae species; Level 3: three Apiaceae, three Fabaceae species, and Centaurea jacea (Asteraceae), Fagopyrum esculentum (Polygonaceae), Sinapis alba (Brassicaceae)). Plots with sown wildflower strip mixtures were located adjacent to experimental plots of organically-managed tomato crop, which is attacked by multiple pests and partially relies on bees for fruit production, and hence dependent on the provision of pollination and pest control services. Results obtained here show that the inclusion of functionally diverse wildflower species was associated with an augmented availability of floral resources across time, and this increased the abundance of bees and anthocorids throughout the crop season. Several natural enemy groups, such as parasitoids, coccinelids and ground-dwelling predators, were not significantly enhanced by the inclusion of additional flower traits within the strips but the presence of flower resources was important to enhance their conservation in an arable cropping system.  相似文献   

16.
Non-crop areas can increase the abundance of natural invertebrate enemies on farmland and assist in invertebrate pest control, but the relative benefits of different types of vegetation are often unclear. Here, we investigated abundance of natural enemies in vineyards with edges consisting of different types of vegetation: remnant native forests, wooded margins planted after establishment of the crop (hereafter called shelterbelts), or pasture. Invertebrates were sampled four times using canopy sticky traps and ground level pitfall traps, replicated across two seasons at one of the sites. The distribution and abundance of natural enemies in relation to edges with adjacent vegetation or pasture were mapped by distance indices (SADIE) and compared with ANOVAs. There was a positive influence of adjacent wooded vegetation on staphylinids, predatory thrips, predatory mites, spiders, ladybird beetles and hymenopteran parasitoids including Trichogramma egg parasitoids in the canopy and/or at ground level, although there were significant differences among sites and groups of organisms. In contrast, pasture edges had no effect or a negative effect on numbers of natural enemies in vineyards. To directly assess potential beneficial effects of adjacent vegetation, predation and parasitism of eggs of a vineyard insect pest, Epiphyas postvittana Walker (Lepidoptera: Tortricidae), was measured. Parasitism by Trichogramma was higher adjacent to remnant vegetation while predation was not affected. These results indicate that the abundance and distribution of vineyard natural enemies and parasitism of pest moth eggs is increased adjacent to edges with wooded vegetation, leading to beneficial effects for pest control. The conservation of remnant woodland and planting of shelterbelts around vineyards may therefore have direct economic benefits in terms of pest control, whereas non-crop pasture may not produce such benefits.  相似文献   

17.
Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi‐natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory.  相似文献   

18.
农田边界植草带是农田系统各斑块间生物物种迁移和群落演替、物质和能量交换的主要区域,对维持农业生物多样性及提高农田生产力具有重要意义。基于作物-害虫-天敌互作有机整体对植草带宽度的响应,选取不同宽度植草带(2 m、4 m、6 m)及其比邻农田并以对应宽度作物边界作为对照,采用地表陷阱法对蜘蛛和步甲进行取样调查,探究植草带宽度对蜘蛛和步甲种群结构、迁移扩散规律以及对农田害虫控制潜力的影响。结果表明:植草带内蜘蛛和步甲个体数均显著高于对照条带,4 m、6 m植草带的蜘蛛和步甲多度显著高于2 m植草带,且物种丰富度和多度显著高于其对照条带。此外,不同宽度植草带蜘蛛和步甲群落存在较高的异质性,蜘蛛和步甲群落结构差异显著;在4 m和6 m植草带及其比邻玉米田内,蜘蛛和步甲多度在植草带和植草带与比邻玉米田交界处显著高于农田内部,且随距离的增加,蜘蛛物种多度呈显著降低趋势,植草带宽度和距离共同决定蜘蛛和步甲的空间分布;Monte Carlo检验结果表明,植草带宽度、植被Margalef指数对农田中蜘蛛和步甲群落结构的影响均达到显著水平,蜘蛛主要优势科和步甲主要优势种主要分布在6 m植草带比邻玉米田内;4 m、6 m植草带比邻的玉米田中蜘蛛和步甲对玉米害虫的益害比显著高于2 m植草带比邻的玉米田,且4 m、6 m植草带显著增加了玉米籽粒的百粒重及比邻农田的玉米总产量。本研究对植草带涵养捕食性天敌预防害虫发生的最适宽度进行探索,综合考虑植草带耕地占用、天敌涵养和生物控害潜力等因素,确定4 m宽度植草带是具有推广价值的农田边界模式。  相似文献   

19.
Habitat manipulation is a branch of conservation biological control in which vegetation complexity and diversity are increased in managed landscapes to provide food and other resources for arthropod natural enemies. This is often achieved by maintaining noncrop plant material such as flowering strips and beetle banks that provide natural enemies with nectar and pollen, alternative prey, shelter from disturbance, and overwintering sites. In most cases, plant material used in habitat manipulation programs is not native to the area in which it is planted. Using native plant species in conservation biological control could serve a dual function of suppressing pest arthropod outbreaks and promoting other valuable ecosystem services associated with native plant communities. We evaluated 10 plant species native to Maryland for their attractiveness to foliar and ground-dwelling natural enemies. Plants that showed particular promise were Monarda punctata, Pycnanthemum tenuifolium, and Eupatorium hyssopifolium, which generally harbored the greatest abundance of foliar predators and parasitoids, although abundance varied over time. Among ground-dwelling natural enemies, total predator and parasitoid abundance differed between plant species, but carabid and spider abundance did not. Matching certain plant species and their allied natural enemies with specific pest complexes may be enhanced by identifying the composition of natural enemy assemblages at different times of year and in both foliar and ground habitat strata.  相似文献   

20.
Semi-natural habitats in agricultural landscapes are generally assumed to enhance the biological control of insect pests based on native beneficial insects, by providing alternative prey and hosts, resources and refuges for overwintering. We hypothesized that natural enemies of winter wheat aphids should arrive sooner in fields near semi-natural habitats. We compared aphid, hoverfly (larvae and eggs) and parasitized aphid (mummies) abundances in 54 winter wheat fields located in southern France from 2003 to 2007. Six surveys were recorded each spring and were split into the early period (defined as the period before the peak of aphid growth) and the late period (after the peak). The wheat fields differed by their surrounding landscape composition measured as the proportion of semi-natural habitats (woods, hedges and grasslands), at three different spatial scales: 200 m, 500 m, and 1200 m. Despite great variability in abundance data between years, the abundance of hoverflies appeared more sensitive to landscape composition than aphid abundance was. Early abundance for both aphids and hoverflies was positively related to wood cover, but not late abundance in spring. The abundance of hoverflies was positively related to hedge and grassland cover at all spatial scales and both periods considered. Aphid parasitism was higher near hedges at the small spatial scale late in the spring. Our results confirmed that higher proportions of semi-natural habitats in agricultural landscapes enhance the biological control of pests, but this effect depends on the spatial scale, the time period in the spring and the natural enemies considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号