首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Demyelination is a pathological process characterized by the loss of myelin around axons. In the central nervous system, oligodendroglial damage and demyelination are common pathological features characterizing white matter and neurodegenerative disorders. Remyelination is a regenerative process by which myelin sheaths are restored to demyelinated axons, resolving functional deficits. This process is often deficient in demyelinating diseases such as multiple sclerosis (MS), and the reasons for the failure of repair mechanisms remain unclear. The characterization of these mechanisms and the factors involved in the proliferation, recruitment, and differentiation of oligodendroglial progenitor cells is key in designing strategies to improve remyelination in demyelinating disorders. First, a very dynamic combination of different molecules such as growth factors, cytokines, chemokines, and different signaling pathways is tightly regulated during the remyelination process. Second, factors unrelated to this pathology, i.e., age and genetic background, may impact disease progression either positively or negatively, and in particular, age-related remyelination failure has been proven to involve oligodendroglial cells aging and their intrinsic capacities among other factors. Third, nutrients may either help or hinder disease progression. Experimental evidence supports the anti-inflammatory role of omega-6 and omega-3 polyunsaturated fatty acids through the competitive inhibition of arachidonic acid, whose metabolites participate in inflammation, and the reduction in T cell proliferation. In turn, vitamin D intake and synthesis have been associated with lower MS incidence levels, while vitamin D–gene interactions might be involved in the pathogenesis of MS. Finally, dietary polyphenols have been reported to mitigate demyelination by modulating the immune response.  相似文献   

2.
Remyelination in the CNS: from biology to therapy   总被引:1,自引:0,他引:1  
Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.  相似文献   

3.
Multiple sclerosis (MS) is a CNS disorder characterized by demyelination and neurodegeneration. Although hallmarks of recovery (remyelination and repair) have been documented in early MS, the regenerative capacity of the adult CNS per se remains uncertain with the wide held belief that it is either limited or non‐existent. The neural cell adhesion molecule (NCAM) is a cell adhesion molecule that has been widely implicated in axonal outgrowth, guidance and fasciculation. Here, we used in vitro and in vivo of MS to investigate the role of NCAM in disease progression. We show that in health NCAM levels decrease over time, but this occurs acutely after demyelination and remains reduced in chronic disease. Our findings suggest that depletion of NCAM is one of the factors associated with or possibly responsible for disease progression in MS.  相似文献   

4.
Accumulating evidence indicates that the medial prefrontal cortex (mPFC) is a site of myelin and oligodendrocyte abnormalities that contribute to psychotic symptoms of schizophrenia. The development of therapeutic approaches to enhance remyelination, a regenerative process in which new myelin sheaths are formed on demyelinated axons, may be an attractive remedial strategy. Geissoschizine methyl ether (GM) in the Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan (Yi-gan san), is one of the active components responsible for the psychotropic effects of yokukansan, though little is known about the mechanisms underlying the effects of either that medicine or GM itself. In the present study, we employed a cuprizone (CPZ)-induced demyelination model and examined the cellular changes in response to GM administration during the remyelination phase in the mPFC of adult mice. Using the mitotic marker 5-bromo-2′-deoxyuridine (BrdU), we demonstrated that CPZ treatment significantly increased the number of BrdU-positive NG2 cells, as well as microglia and mature oligodendrocytes in the mPFC. Newly formed oligodendrocytes were increased by GM administration after CPZ exposure. In addition, GM attenuated a decrease in myelin basic protein immunoreactivity caused by CPZ administration. Taken together, our findings suggest that GM administration ameliorated the myelin deficit by mature oligodendrocyte formation and remyelination in the mPFC of CPZ-fed mice. The present findings provide experimental evidence supporting the role for GM and its possible use as a remedy for schizophrenia symptoms by promoting the differentiation of progenitor cells to and myelination by oligodendrocytes.  相似文献   

5.
The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines.  相似文献   

6.
For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.  相似文献   

7.
Vascularization is a multifactorial and spatiotemporally regulated process, essential for cell and tissue survival. Vascular alterations have repercussions on the development and progression of diseases such as cancer, cardiovascular diseases, and diabetes, which are the leading causes of death worldwide. Additionally, vascularization continues to be a challenge for tissue engineering and regenerative medicine. Hence, vascularization is the center of interest for physiology, pathophysiology, and therapeutic processes. Within vascularization, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Hippo signaling have pivotal roles in the development and homeostasis of the vascular system. Their suppression is related to several pathologies, including developmental defects and cancer. Non-coding RNAs (ncRNAs) are among the regulators of PTEN and/or Hippo pathways during development and disease. The purpose of this paper is to review and discuss the mechanisms by which exosome-derived ncRNAs modulate endothelial cell plasticity during physiological and pathological angiogenesis, through the regulation of PTEN and Hippo pathways, aiming to establish new perspectives on cellular communication during tumoral and regenerative vascularization.  相似文献   

8.
Multiple sclerosis is a common cause of neurological disability in young adults. The disease is complex -- its aetiology is multifactorial and largely unknown; its pathology is heterogeneous; and, clinically, it is difficult to diagnose, manage and treat. However, perhaps its most frustrating aspect is the inadequacy of the healing response of remyelination. This regenerative process generally occurs with great efficiency in experimental models, and sometimes proceeds to completion in multiple sclerosis. But as the disease progresses, the numbers of lesions in which demyelination persists increases, significantly contributing to clinical deterioration. Understanding why remyelination fails is crucial for devising effective methods by which to enhance it.  相似文献   

9.
Spontaneous myelin repair in multiple sclerosis (MS) provides a striking example of the brain's inherent capacity for sustained and stable regenerative tissue repair--but also clearly emphasizes the limitations of this capacity; remyelination ultimately fails widely in many patients, and disability and handicap accumulate. The observation of endogenous partial myelin repair has raised the possibility that therapeutic interventions designed to supplement or promote remyelination might have a useful and significant impact both in the short term, in restoring conduction, and in the long term, in safeguarding axons. Therapeutic remyelination interventions must involve manipulations to either the molecular or the cellular environment within lesions; both depend crucially on a detailed understanding of the biology of the repair process and of those glia implicated in spontaneous repair, or capable of contributing to exogenous repair. Here we explore the biology of myelin repair in MS, examining the glia responsible for successful remyelination, oligodendrocytes and Schwann cells, their 'target' cells, neurons and the roles of astrocytes. Options for therapeutic remyelinating strategies are reviewed, including glial cell transplantation and treatment with growth factors or other soluble molecules. Clinical aspects of remyelination therapies are considered--which patients, which lesions, which stage of the disease, and how to monitor an intervention--and the remaining obstacles and hazards to these approaches are discussed.  相似文献   

10.
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.  相似文献   

11.
12.
Multiple sclerosis is the most common potential cause of neurological disability in young adults. The disease has two distinct clinical phases, each reflecting a dominant role for separate pathological processes: inflammation drives activity during the relapsing-remitting stage and axon degeneration represents the principal substrate of progressive disability. Recent advances in disease-modifying treatments target only the inflammatory process. They are ineffective in the progressive stage, leaving the science of disease progression unsolved. Here, the requirement is for strategies that promote remyelination and prevent axonal loss. Pathological and experimental studies suggest that these processes are tightly linked, and that remyelination or myelin repair will both restore structure and protect axons. This review considers the basic and clinical biology of remyelination and the potential contribution of stem and precursor cells to enhance and supplement spontaneous remyelination.  相似文献   

13.
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research—for instance, ESCs represent a perfect system to study cellular differentiation in vitro—but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology.  相似文献   

14.
Acute demyelination of adult CNS, resulting from trauma or disease, is initially followed by remyelination. However, chronic lesions with subsequent functional impairment result from eventual failure of the remyelination process, as seen in multiple sclerosis. Studies using animal models of successful remyelination delineate a progression of events facilitating remyelination. A universal feature of this repair process is extensive proliferation of oligodendrocyte progenitor cells (OPs) in response to demyelination. To investigate signals that regulate OP proliferation in response to demyelination we used murine hepatitis virus-A59 (MHV-A59) infection of adult mice to induce focal demyelination throughout the spinal cord followed by spontaneous remyelination. We cultured glial cells directly from demyelinating and remyelinating spinal cords using conditions that maintain the dramatically enhanced OP proliferative response prior to CNS remyelination. We identify PDGF and FGF2 as significant mitogens regulating this proliferative response. Furthermore, we demonstrate endogenous PDGF and FGF2 activity in these glial cultures isolated from demyelinated CNS tissue. These findings correlate well with our previous demonstration of increased in vivo expression of PDGF and FGF2 ligand and corresponding receptors in MHV-A59 lesions. Together these studies support the potential of these pathways to function in vivo as critical factors in regulating remyelination.  相似文献   

15.
Remyelination is a regenerative process in the central nervous system (CNS) that produces new myelin sheaths from adult stem cells. The decline in remyelination that occurs with advancing age poses a significant barrier to therapy in the CNS, particularly for long-term demyelinating diseases such as multiple sclerosis (MS). Here we show that remyelination of experimentally induced demyelination is enhanced in old mice exposed to a youthful systemic milieu through heterochronic parabiosis. Restored remyelination in old animals involves recruitment to the repairing lesions of blood-derived monocytes from the young parabiotic partner, and preventing this recruitment partially inhibits rejuvenation of remyelination. These data suggest that enhanced remyelinating activity requires both youthful monocytes and other factors, and that remyelination-enhancing therapies targeting endogenous cells can be effective throughout life.  相似文献   

16.
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.  相似文献   

17.
Hanafy KA  Sloane JA 《FEBS letters》2011,585(23):3821-3828
Multiple sclerosis is a common demyelinating disease that worsens over the course of disease, a significant problem in clinical management. Disability in MS is significantly promoted by poor repair and remyelination of lesions. Both oligodendrocyte recruitment and maturation defects are seen as major causes of poor remyelination in MS. The mechanisms behind impaired remyelination in animal models include involvement of the Notch1, wnt, and hyaluronan/TLR2 pathways. RXR/PPAR signaling has also more recently been identified as an important regulator of remyelination. The local inflammatory milieu also appears to play critical and conflicting roles in promotion and inhibition of remyelination in MS. Understanding the forces regulating remyelination in MS represents an exciting and important initial step towards developing therapeutics targeting chronic disability in MS.  相似文献   

18.
Lives of a heart cell: tracing the origins of cardiac progenitors   总被引:1,自引:0,他引:1  
Heart cells are the unitary elements that define cardiac function and disease. The recent identification of distinct families of cardiovascular progenitor cells begins to build a foundation for our understanding of the developmental logic of human cardiovascular disease, and also points to new approaches to arrest and/or reverse its progression, a major goal of regenerative medicine. In this review, we highlight recent clarifications, revisions, and advances in our understanding of the many lives of a heart cell, with a primary focus on the emerging links between cardiogenesis and heart stem cell biology.  相似文献   

19.
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.  相似文献   

20.
Mitochondria have long been recognized as cellular energy power houses that also regulate cellular redox signaling to arbitrate cell survival. Recent studies of mitochondria in stem cells (SCs) demonstrate that they have critical roles beyond this traditional view. Embryonic (E) SCs, termed pluripotent for their ability to differentiate into all cell types within an organism, maintain a limited number of morphologically undifferentiated (electron translucent and poorly formed cristae) mitochondria. As these cells differentiate, their mitochondria undergo a tightly choreographed gain of number, mass and morphological complexity. Therefore, mechanisms that regulate mitochondrial growth, localization, division and partition must play active roles in the maintenance of pluripotency and execution of differentiation. Aberrant mitochondrial dynamics are associated with a plethora of human disorders, for which SCs hold curative potential. Hence, a comprehensive understanding of the mechanisms that regulate mitochondrial dynamics and function in SCs and their overall relationship to the maintenance of pluripotency is pivotal for the progression of therapeutic regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号