首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxoplasmosis is an important zoonotic disease that can cause abortion in humans and animals. The aim of this study was isolation and subsequent genotyping of Toxoplasma gondii isolates in ovine aborted fetuses. During 2012-2013, 39 ovine aborted fetuses were collected from sheep flocks in Khorasan Razavi Province, Iran. The brain samples were screened for detection of the parasite DNA by nested PCR. The positive brain samples were bioassayed in Webster Swiss mice. The serum samples of mice were examined for T. gondii antibodies by IFAT at 6 weeks post inoculation, and T. gondii cysts were searched in brain tissue samples of seropositive mice. The positive samples were genotyped by using a PCR-RLFP method. Subsequently, GRA6 sequences of isolates were analyzed using a phylogenetic method. The results revealed that T. gondii DNA was detected in 54% (20/37, 95% CI 38.4-69.0%) brain samples of ovine aborted fetuses. In bioassay of mice, only 2 samples were virulent and the mice were killed at 30 days post inoculation, while the others were non-virulent to mice. The size of cysts ranged 7-22 µm. Complete genotyping data for GRA6 locus were observed in 5 of the 20 samples. PCR-RLFP results and phylogenetic analysis revealed that all of the isolated samples were closely related to type I. For the first time, we could genotype and report T. gondii isolates from ovine aborted fetuses in Khorasan Razavi Province, Iran. The results indicate that the T. gondii isolates are genetically related to type I, although most of them were non-virulent for mice.  相似文献   

2.
The aim of this work is to study the effect of the vitrification procedure on prenatal survival and on placental development at the end of gestation in rabbits (Oryctolagus cuniculus). One hundred eighty-one females were slaughtered at 72 h of gestation. Morphologically normal embryos recovered at 72 h of gestation were kept at room temperature until transfer or vitrification. Vitrified embryos (320 embryos) were transferred into a total of 24 does and fresh embryos (712 embryos) were transferred into a total of 43 does. Females were induced to ovulate 72 h before transfer when fresh embryos were transferred and 60 to 63 h before transfer when vitrified embryos were transferred. Each recipient doe received eight embryos into the left oviduct and eight embryos into the right oviduct. The number of implanted embryos was estimated by laparoscopy as number of implantation sites at Day 14 of gestation. Recipient females were slaughtered by stunning and exsanguination 25 d after the transfer, and fetuses were classified according to their status. Live fetuses and fetal and maternal placenta were weighed Pregnancy rate was defined as the total number of females having at least one live fetus at Day 28 of gestation divided by the total number of females. Prenatal survival was estimated as live fetuses at Day 28 of gestation divided by the number of transferred embryos. The pregnancy rate after transfer of vitrified embryos (92%) was similar to that achieved with fresh embryos (86%), but prenatal survival was lower for vitrified than for fresh embryos (53% vs. 34%). We did not find differences in embryo survival from 72 h to implantation. Transfer of vitrified embryos reduced fetal survival from implantation to Day 28 (57% vs. 82%). Differences in the number of live fetuses at Day 28 of gestation were mainly due to the higher fetal mortality observed soon after implantation in pregnancies resulting from the transfer of vitrified embryos. A higher percentage of decidual reactions and atrophic maternal placentas (27.5% vs. 8.3%) and also of atrophic fetal and maternal placentas (12.1% vs. 5.3%) were observed after transfer of vitrified embryos. Both treatments showed similar percentage of dead fetuses (3.3% vs. 4%). Maternal placenta of the fetuses from fresh embryos was 15% heavier than maternal placenta of fetuses from vitrified embryos.  相似文献   

3.
The aims of this study were to identify the occurrence of Toxoplasma gondii and Neospora caninum abortions in goats from Argentina by serological, macroscopical and microscopical examination and bioassay, and to characterize the obtained isolates by molecular techniques. For this purpose, 25 caprine fetal fluids, 18 caprine fetal brains and 10 caprine placentas from 8 dairy/meat goat farms from Argentina were analyzed. Gestational age of the aborted fetuses was determined in 18 cases. Protozoal infections were detected by at least one of the applied diagnostic techniques in 44% (11/25) of examined fetuses; specifically, 24% (6/25) were positive to T. gondii, 8% (2/25) were positive to N. caninum and 12% (3/25) were positive to both parasites. In this study IFAT titers were similarly distributed in younger and older fetuses. Macroscopical and microscopical examination of one placenta revealed chalky nodules in the fetal cotyledons and normal intercotyledonary areas, as well as necrosis and calcification of mesenchymal cells in villi. Tachyzoites were observed in peritoneal wash from 2 mice inoculated with brain and a pool of brain and placenta of two fetuses. Cell culture growth of tachyzoites was achieved from one inoculated mouse, and confirmed as T. gondii by PCR. The T. gondii isolate was identified as atypical or non-canonical by nested-PCR-RFLP. This is the first study that investigated the involvement of N. caninum and T. gondii in cases of goat abortion in Argentina.  相似文献   

4.
Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world's population. The small intestine is the parasite's primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells.  相似文献   

5.
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.  相似文献   

6.
Metabolism of radium including the transfer to the fetus through the placenta was studied during three successive pregnancies 92, 155, and 213 days after injection of 226Ra in young female rats. The cumulative fecal and urinary excretions of 226Ra in a 213-day period following injection were about 30 and 15% injected dose (%ID), respectively, most of them occurring during the first 42 days. The excretions were similar in both the pregnant and control (unmated) rats. The whole-body burden of radium (mostly in the skeleton) determined by actual analysis of the entire body was similar in the two groups and was about 53, 48, and 44 %ID at the first, second, and third pregnancy, respectively. Pregnancy alone, therefore, did not significantly affect metabolism of radium. At 20 days of gestation the mean placental content of radium was 0.005, 0.0045, and 0.0036 %ID in the first, second, and third litter, respectively; the corresponding mean fetal content was 0.01, 0.008, and 0.005 %ID. The radium burden of the full-term neonate (21-22 days) was 0.014 and 0.011 %ID for the first and second delivery, respectively. The total amount calculated of radium transferred from the mother to the 8-10 fetuses in a litter did not exceed about 0.3% of the maternal content per each pregnancy. Comparison of the ratio of radium and calcium in the fetus and maternal skeleton shows that there is a Ra-Ca discrimination during their passage from the mother to the fetus.  相似文献   

7.
8.
Toxoplasmosis, a most common zoonosis, is caused by the protozoan parasite Toxoplasma gondii. However, there is little epidemiological information on T. gondii infections in humans and livestock animals in Russia. Therefore, in this study, the seroprevalence of T. gondii in goats in Russia was investigated. A total of 216 goats from 32 farms were investigated and 95 of them were seropositive for T. gondii. The difference in seroprevalence between the examined regions was not statistically significant. We next collected serum samples from 99 cats and 181 humans in Kazan city, the state capital of the Republic of Tatarstan, Russia, and examined their T. gondii seroprevalences. Thirty-nine of the 99 cat samples and 56 of the 181 human samples showed seropositivity. Logistical regression analysis revealed that the cat breeding history of the human subjects, but not their sex or age is a significant risk factor for T. gondii seropositivity. These findings suggest that the natural environment in Russia may be widely polluted with T. gondii oocysts shed by cats, and ingestion of these oocysts provides a major route for human infection with this parasite.  相似文献   

9.
Two studies, of a natural infection and an experimental infection, were performed in order to study congenital transmission of Toxoplasma gondii in cattle. In the first study, 50 fetuses were harvested from gestating cows that were eutanasied at a municipal slaughterhouse in Jaboticabal, São Paulo state, Brazil. In the second study, 11 gestating cows were divided into four groups for inoculation with T. gondii: GI consisted of three cows inoculated with 1.0 × 105 oocysts during their first trimester of gestation; GII consisted of three cows inoculated with 1.0 × 105 oocysts during their second trimester of gestation; GIII consisted of three cows inoculated with 1.0 × 105 oocysts during their last trimester of gestation; and GIV consisted of two control cows, one during its first and the other during its second trimester of gestation. In both studies, the presence of T. gondii was confirmed both indirectly by immunofluorescence assay (IFAT). In the natural infection experiment, 18% (9/50) of the gestating cows were confirmed to have specific antibodies (IFAT – 1:64) against T. gondii. The bioassay was able to diagnose the presence of T. gondii in the tissue samples from three calves. In the second experiment, the nine cows from groups I, II and III presented with specific antibodies (IFAT) against T. gondii. In contrast, T. gondii could not be detected by IFAT, histopathological examination or the bioassay in any of the nine calves born to cows experimentally infected with T. gondii oocysts. Based on the results from both studies, we conclude that congenital infection of T. gondii in cattle, while infrequent, does occur naturally. The pathogenicity of the strain of T. gondii may influence the likelihood of this route of transmission.  相似文献   

10.
Toxoplasma gondii is an intracellular parasite involved in the etiology of various behavioral and hormonal alterations in humans and rodents. Various mechanisms, including induction changes of testosterone production, have been proposed in the etiology of behavioral alterations during T. gondii infection. However, controversy remains about the effects of T. gondii infection on testosterone production; in some studies, increased levels of testosterone were reported, whereas other studies reported decreased levels. This is a significant point, because testosterone has been shown to play important roles in various processes, from reproduction to fear and behavior. This contradiction seems to indicate that different factors--primarily parasite strains and host variations--have diverse effects on the intensity of T. gondii infection, which consequently has diverse effects on testosterone production and behavioral alterations. This paper reviews the role of parasite strains, host variations, and intensity of T. gondii infection on behavioral alterations and testosterone production, as well as the role of testosterone in the etiology of these alterations during toxoplasmosis.  相似文献   

11.
The apicomplexan parasite Toxoplasma gondii invades tissues and traverses non‐permissive biological barriers in infected humans and other vertebrates. Following ingestion, the parasite penetrates the intestinal wall and disseminates to immune‐privileged sites such as the brain parenchyma, after crossing the blood–brain barrier. In the present study, we have established a protocol for high‐purification of primary mouse brain endothelial cells to generate stably polarised monolayers that allowed assessment of cellular barrier traversal by T. gondii. We report that T. gondii tachyzoites translocate across polarised monolayers of mouse brain endothelial cells and human intestinal Caco2 cells without significantly perturbing barrier impermeability and with minimal change in transcellular electrical resistance. In contrast, challenge with parasite lysate or LPS increased barrier permeability by destabilising intercellular tight junctions (TJs) and accentuated transmigration of T. gondii. Conversely, reduced phosphorylation of the TJ‐regulator focal adhesion kinase (FAK) was observed dose‐dependently upon challenge of monolayers with live T. gondii but not with parasite lysate or LPS. Pharmacological inhibition of FAK phosphorylation reversibly altered barrier integrity and facilitated T. gondii translocation. Finally, gene silencing of FAK by shRNA facilitated transmigration of T. gondii across epithelial and endothelial monolayers. Jointly, the data demonstrate that T. gondii infection transiently alters the TJ stability through FAK dysregulation to facilitate transmigration. This work identifies the implication of the TJ regulator FAK in the transmigration of T. gondii across polarised cellular monolayers and provides novel insights in how microbes overcome the restrictiveness of biological barriers.  相似文献   

12.
The discovery of two quinazolinones with selective, single-digit micromolar activity (IC50?=?6–7?µM) against the tachyzoites of the apicomplexan parasite Toxoplasma gondii is reported. These potent and selective third generation derivatives contain a benzyloxybenzyl substituent at C2 and a bulky aliphatic moiety at N3. Here we show that these quinazolinones inhibit T. gondii tachyzoite replication in an established infection, but do not significantly affect host cell invasion by the tachyzoites.  相似文献   

13.
The Atlantic sharpnose shark Rhizoprionodon terraenovae (Richardson) is a small carcharhinid that is a common year-round resident along the southeast coast of the United States. It is viviparous and its embryos develop an epithelio-vitelline placenta. Females enter shallow water to give birth in late May and early June. Mating occurs shortly after parturition, and four to seven eggs are ovulated. Fertilized eggs attain the blastoderm stage in early June to early July. Separate compartments for each egg are formed in the uterus when the embryos reach 3–30 mm. Embryos depend on yolk for the first 8 weeks of development. When embryos reach 72 mm their yolk supply is nearly depleted and they shift to matrotrophic nutrition. When the embryos reach 40–55 mm, placental development begins with the vascularization of the yolk sac where it contacts the uterine wall. Implantation occurs at an age of 8–10 weeks by which time the embryos reach 70–85 mm. The expanding yolk sac engulfs the maternal placental villi, and its surface interdigitates with the villi to form the placenta. The rest of the lumenal surface of the uterus is covered by non-placental villi that appear shortly after implantation. Histotrophe production by the non-placental villi begins just after their formation. The placenta grows continuously during gestation. The egg envelope is present throughout gestation, separating maternal and fetal tissues. Embryos develop numerous appendiculae on the umbilical cord. Young sharks are born at 290–320 mm after a gestation period of 11 to 12 months. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

15.
Toxoplasma gondii, an obligate intracellular protozoan parasite, can establish a chronic infection in the brain by forming tissue cysts. This chronic infection is widespread in humans worldwide including developed countries, with up to one third of the population being estimated to be infected with this parasite. Diagnosis of this chronic infection is usually conducted by serological detection of IgG antibodies against this parasite. Since infected individuals remain positive for these antibodies for years, it has generally been considered that this infection is a lifelong infection. It is also often considered that this chronic infection is “latent” or “quiescent”. However, recent discovery of the capability of perforin-dependent, CD8+ T cell-mediated immune responses to eliminate T. gondii cysts in collaboration with phagocytes illustrated dynamic interplays between T. gondii cysts and host immune system during this chronic infection. Importantly, the cytotoxic T cell-mediated protective immunity is able to remove mature cysts of the parasite. It is now clear that chronic T. gondii infection is not “latent” or “quiescent”. Elucidating the mechanisms of the dynamic host-pathogen interactions between the anti-cyst protective immunity and T. gondii cysts and identifying the pathway to appropriately activate anti-cyst CD8+ cytotoxic T cells would be able to open a door for eradicating T. gondii cysts and curing chronic infection with this parasite.  相似文献   

16.
Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions.  相似文献   

17.
The National Health and Nutrition Examination Survey (NHANES) evaluates the epidemiology in the U.S. population of certain infectious diseases, including Toxoplasma gondii (T. gondii), a protozoan parasite. This study aims to evaluate the seroprevalence of T. gondii -IgG antibodies using NHANES data to identify risk factors related to T. gondii. Using NHANES 2009–10, 2011–12, and 2013–14 cycles, univariate analyses and logistic regression models were conducted to determine the relationship between T. gondii seropositivity and various risk factors. Across the three cycles, 13.3% of participants tested positive for T. gondii-IgG seroprevalence, with a significant decrease in seroprevalence from the earlier to later cycles. 53.4% of individuals with positive serology were male. The probability of testing positive for T. gondii -IgG significantly increases between four and five times from the 18–29 age group to 70–79 age group. Seroprevalence also differed by ethnicity, with Latinos of any race having two times higher odds of testing positive for T. gondii compared to other ethnicities. Other sociodemographic factors were associated with lower odds of T. gondii seropositivity, including college education, higher household income, and health insurance. Most clinical conditions were not significantly associated with T. gondii, excluding depression, which was observed in 25% of patients positive for T. gondii-IgG. Further research on the influence of this parasite on infected individuals, including predispositions for risk-taking, is needed to better understand the relationship between Toxoplasma gondii, depression, and other mental illnesses.  相似文献   

18.
The ability of T cells to operate in the central nervous system (CNS) is required for resistance to multiple pathogens that affect this tissue. The intracellular parasite Toxoplasma gondii has evolved to persist in the CNS and poses unique challenges to the immune system with the need to control parasite replication while balancing the adverse pathology associated with local inflammation. This article reviews the models used to study the response to T. gondii during toxoplasmic encephalitis and highlights some of the broader lessons that are relevant to understanding how T cells function in the CNS.  相似文献   

19.
Toxoplasma gondii is an opportunistic intracellular parasite that is highly prevalent in human and warm-blooded animals throughout the world, leading to potentially severe congenital infections. Although the abortion caused by T. gondii is believed to be dependent on the timing of maternal infection during pregnancy, the mechanism remains unclear. This study was focused on the effects of T. gondii excreted-secreted antigens on pregnant outcomes and CD4+CD25+ Foxp3+ regulatory T cells at different stages of pregnancy. The results showed that in mice the frequency and suppressive function of CD4+CD25+ regulatory cells were diminished after injection of T. gondii excreted-secreted antigens at early and intermediate stages of pregnancy. The abortion caused by T. gondii excreted-secreted antigens at early pregnancy could be partly prevented by adoptively transferring of CD4+CD25+ cells from the mice injected with T. gondii excreted-secreted antigens at late pregnancy, but not from the mice with the same treatment at early pregnancy. Furthermore, T. gondii excreted-secreted antigens induced apoptosis of CD4+CD25+ regulatory cells of mice in early and intermediate stages of pregnancy by down-regulating their Bcl-2 expressions and Bcl-2/Bax ratio. This study provides new insights into the mechanism that T. gondii infection is the high risk factor for abortion in early pregnancy.  相似文献   

20.
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号