首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2’3’-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.  相似文献   

2.
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.  相似文献   

3.
Influenza is an acute respiratory disease and a global health problem. Although influenza vaccines are commercially available, frequent antigenic changes in hemagglutinin might render them less effective or unavailable. We previously reported that modified outer membrane vesicle (fmOMV) provided immediate and robust protective immunity against various subtypes of influenza virus. However, the effect was transient because it was innate immunity-dependent. In this study, we investigated the effects of consecutive administration of fmOMV and influenza virus on the adaptive immune response and long-term protective immunity against influenza virus. When the mice were pretreated with fmOMV and subsequently infected with influenza virus, strong influenza-specific antibody and T cell responses were induced in both systemic and lung mucosal compartments without pathogenic symptoms. Upon the secondary viral challenge at week 4, the mice given fmOMV and influenza virus exhibited almost complete protection against homologous and heterologous viral challenge. More importantly, this strong protective immunity lasted up to 18 weeks after the first infection. These results show that pretreatment with fmOMV and subsequent infection with influenza virus efficiently induces broad and long-lasting protective immunity against various virus subtypes, suggesting a novel antiviral strategy against newly-emerging viral diseases without suitable vaccines or therapeutics.  相似文献   

4.
Siglecs (sialic acid–binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec–sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.  相似文献   

5.
《Endocrine practice》2021,27(5):484-493
Vitamin D is known not only for its importance for bone health but also for its biologic activities on many other organ systems. This is due to the presence of the vitamin D receptor in various types of cells and tissues, including the skin, skeletal muscle, adipose tissue, endocrine pancreas, immune cells, and blood vessels. Experimental studies have shown that vitamin D exerts several actions that are thought to be protective against coronavirus disease (COVID-19) infectivity and severity. These include the immunomodulatory effects on the innate and adaptive immune systems, the regulatory effects on the renin-angiotensin-aldosterone-system in the kidneys and the lungs, and the protective effects against endothelial dysfunction and thrombosis. Prior to the COVID-19 pandemic, studies have shown that vitamin D supplementation is beneficial in protecting against risk of acquiring acute respiratory viral infection and may improve outcomes in sepsis and critically ill patients. There are a growing number of data connecting COVID-19 infectivity and severity with vitamin D status, suggesting a potential benefit of vitamin D supplementation for primary prevention or as an adjunctive treatment of COVID-19. Although the results from most ongoing randomized clinical trials aiming to prove the benefit of vitamin D supplementation for these purposes are still pending, there is no downside to increasing vitamin D intake and having sensible sunlight exposure to maintain serum 25-hydroxyvitamin D at a level of least 30 ng/mL (75 nmol/L) and preferably 40 to 60 ng/mL (100-150 nmol/L) to minimize the risk of COVID-19 infection and its severity.  相似文献   

6.
Testicular function and structure harmed by ageing. Goal of this research was to assess preventive actions of soy isoflavone oral administration for 8 weeks on testes of old male albino rats, and potential mechanisms of action. Adult control (N = 10) and elderly control (N = 10) rats were fed usual diet, while aged treatment group (N = 10) gave oral 100 mg/kg soy isoflavone daily for 8 weeks. ELISA kits were used to measure testosterone levels and oxidative stress indicators [malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)] in serum. Aging produced functional and structural testicular changes and decreased ki67 proliferative marker immunoexpression versus adult control rats due to enhancement of oxidative stress. Soy isoflavone exerted protective effect on testicular function and structure as assessed by increase serum levels of testosterone and preserved histological structure and immune-expression features. These protected effects due to isoflavone antioxidant properties proved by decrease in serum values of MDA, while GSH and SOD were elevated after treatment. These data demonstrated protective effects of isoflavone against age changes in rat testes, by reducing oxidative stress and increasing antioxidants and testicular ki67 proliferative marker immunoexpression.  相似文献   

7.
Geranylgeranoic acid (GGA) was first reported in 1983 as one of the mevalonic acid metabolites, but its biological significance was not studied for a long time. Our research on the antitumor effects of retinoids led us to GGA, one of the acyclic retinoids that induce cell death in human hepatoma-derived cell lines. We were able to demonstrate the presence of endogenous GGA in various tissues of male rats, including the liver, testis, and cerebrum, by LC-MS/MS. Furthermore, the biosynthesis of GGA from mevalonic acid in mammals including humans was confirmed by isotopomer spectral analysis using 13C-labeled mevalonolactone and cultured hepatoma cells, and the involvement of hepatic monoamine oxidase B in the biosynthesis of GGA was also demonstrated. The biological activity of GGA was analyzed from the retinoid (differentiation induction) and nonretinoid (cell death induction) aspects, and in particular, the nonretinoid mechanism by which GGA induces cell death in hepatoma cells was found to involve pyroptosis via ER stress responses initiated by TLR4 signaling. In addition to these effects of GGA, we also describe the in vivo effects of GGA on reproduction. In this review, based mainly on our published papers, we have shown that hepatic monoamine oxidase B is involved in the biosynthesis of GGA and that GGA induces cell death in human hepatoma-derived cell lines by noncanonical pyroptosis, one of the mechanisms of sterile inflammatory cell death.  相似文献   

8.
Type I interferons (IFN) are cytokines that bridge the innate and adaptive immune response, and thus play central roles in human health, including vaccine efficacy, immune response to cancer and pathogen infection, and autoimmune disorders. Post-translational protein modifications by the small ubiquitin-like modifiers (SUMO) have recently emerged as an important regulator of type I IFN expression as shown by studies using murine and cellular models and recent human clinical trials. However, the mechanism regarding how SUMOylation regulates type I IFN expression remains poorly understood. In this study, we show that SUMOylation inhibition does not activate IFNB1 gene promoter that is regulated by known canonical pathways including cytosolic DNA. Instead, we identified a binding site for the chromatin modification enzyme, the SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1), located between the IFNB1 promoter and a previously identified enhancer. We found that SETDB1 regulates IFNB1 expression and SUMOylation of SETDB1 is required for its binding and enhancing the H3K9me3 heterochromatin signal in this region. Heterochromatin, a tightly packed form of DNA, has been documented to suppress gene expression through suppressing enhancer function. Taken together, our study identified a novel mechanism of regulation of type I IFN expression, at least in part, through SUMOylation of a chromatin modification enzyme.  相似文献   

9.
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.  相似文献   

10.
《Endocrine practice》2022,28(10):1100-1106
ObjectiveSince January 2020, the highly contagious novel coronavirus SARS-CoV-2 has caused a global pandemic. Severe COVID-19 leads to a massive release of proinflammatory mediators, leading to diffuse damage to the lung parenchyma, and the development of acute respiratory distress syndrome. Treatment with the highly potent glucocorticoid (GC) dexamethasone was found to be effective in reducing mortality in severely affected patients.MethodsTo review the effects of glucocorticoids in the context of COVID-19 we performed a literature search in the PubMed database using the terms COVID-19 and glucocorticoid treatment. We identified 1429 article publications related to COVID-19 and glucocorticoid published from 1.1.2020 to the present including 238 review articles and 36 Randomized Controlled Trials. From these studies, we retrieved 13 Randomized Controlled Trials and 86 review articles that were relevant to our review topics. We focused on the recent literature dealing with glucocorticoid metabolism in critically ill patients and investigating the effects of glucocorticoid therapy on the immune system in COVID-19 patients with severe lung injury.ResultsIn our review, we have discussed the regulation of the hypothalamic-pituitary-adrenal axis in patients with critical illness, selection of a specific GC for critical illness-related GC insufficiency, and recent studies that investigated hypothalamic-pituitary-adrenal dysfunction in patients with COVID-19. We have also addressed the specific activation of the immune system with chronic endogenous glucocorticoid excess, as seen in patients with Cushing syndrome, and, finally, we have discussed immune activation due to coronavirus infection and the possible mechanisms leading to improved outcomes in patients with COVID-19 treated with GCs.ConclusionFor clinical endocrinologists prescribing GCs for their patients, a precise understanding of both the molecular- and cellular-level mechanisms of endogenous and exogenous GCs is imperative, including timing of administration, dosage, duration of treatment, and specific formulations of GCs.  相似文献   

11.
Although co-inhibitory immune checkpoint proteins are primarily involved in promoting cell-cell interactions that suppress adaptive immunity, especially tumor immunity, the soluble cell-free variants of these molecules are also detectable in the circulation of cancer patients where they retain immunosuppressive activity. Nevertheless, little is known about the systemic levels of these soluble co-inhibitory immune checkpoints in patients with various subtypes of basal cell carcinoma (BCC), which is the most invasive and treatment-resistant type of this most commonly-occurring malignancy. In the current study, we have measured the systemic concentrations of five prominent co-inhibitory immune checkpoints, namely CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3, as well as those of C-reactive protein (CRP) and vitamin D (VD), in a cohort of patients (n = 40) with BCC, relative to those of a group of control participants, using the combination of multiplex bead array, laser nephelometry and ELISA technologies, respectively. The median systemic concentrations of CRP and VD were comparable between the two groups; however, those of all five immune checkpoints were significantly elevated (P = 0.0184 - P = < 0.00001), with those of CTLA-4 and PD-1 being highly correlated (r = 0.87; P < 0.00001). This seemingly novel finding not only identifies the existence of significant systemic immunosuppression in BCC, but also underscores the therapeutic promise of immune checkpoint targeted therapy, as well as the potential of these proteins to serve as prognostic/predictive biomarkers in BCC.  相似文献   

12.
13.
14.
Allosteric proteins transition between ‘inactive’ and ‘active’ states. In general, such proteins assume distinct conformational states at the level of secondary, tertiary and/or quaternary structure. Different conformers of an allosteric protein can be antigenically dissimilar and induce antibodies with a highly distinctive specificities and neutralizing functional effects. Here we summarize studies on various functional types of monoclonal antibodies obtained against different allosteric conformers of the mannose-specific bacterial adhesin FimH – the most common cell attachment protein of Escherichia coli and other enterobacterial pathogens. Included are types of antibodies that activate the FimH function via interaction with ligand-induced binding sites or by wedging between domains as well as antibodies that inhibit FimH through orthosteric, parasteric, or novel dynasteric mechanisms. Understanding the molecular mechanism of antibody action against allosteric proteins provides insights on how to design antibodies with a desired functional effect, including those with neutralizing activity against bacterial and viral cell attachment proteins.  相似文献   

15.
Azurin protein of Pseudomonas aeruginosa is an anti-tumor agent against breast cancer and mammaglobin-A (MAM-A) protein is a specific antigen on the surface of MCF-7 for induction of cellular immune. The purpose of the present study was to investigate the effects of simultaneous expression of azurin and human MAM-A genes on the mRNA expression level of apoptosis-related and cell cycle genes in MCF-7 breast cancer cell line. The recombinant or empty plasmids were separately transferred into MCF-7 cells using Lipofectamine reagent. Flow cytometry was done to detect cell death and apoptosis. The expression of azurin and MAM-A genes were evaluated by IF assay, RT-PCR and western blot methods. Finally, apoptosis-related and cell cycle genes expression was examined in transformed and non-transformed MCF-7 cells by qPCR method. The successful expression of azurin and MAM-A genes in the MCF-7 cell were confirmed by RT-PCR, IF and western blotting. The apoptosis assay was showed a statistically significant (p < 0.05) difference after transfection. The expression of BAK, FAS, and BAX genes in transformed cells compare with non-transformed and transformed MCF-7 by pBudCE4.1 were increased statistically significant (p < 0.05) increases. Although, the increase of SURVIVIN and P53 expressions in transformed cells were not statistically significant (p > 0.05). Co-expression of azurin and MAM-A genes could induce apoptosis and necrosis in human MCF-7 breast cancer cells by up-regulation of BAK, FAS, and BAX genes. In future researches, it must be better the immune stimulation of pBudCE4.1-azurin-MAM-A recombinant vector in animal models and therapeutic approaches will be evaluated.  相似文献   

16.
Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.  相似文献   

17.
18.
Neuroimmune dysfunction is a cardinal feature of neurodegenerative diseases. But how immune dysregulation in the brain and peripheral organs contribute to neurodegeneration remains unclear. Here, we discuss the recent advances highlighting neuroimmune dysfunction as a key disease-driving factor in frontotemporal dementia (FTD). We provide an overview of the clinical observations supporting a high prevalence of autoimmune diseases in FTD patients with mutations in GRN or C9orf72. We then focus on a myriad of evidence from human genetic studies, mouse models, in vitro assays, and multi-omics platform, which indicate that haploinsufficiency in GRN and C9orf72 promotes neuroimmune dysfunction and contributes to neurodegeneration and premature death. These compelling data provide key insights to disease mechanisms, biomarker discovery, and therapeutic interventions for FTD (120 words).  相似文献   

19.
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.  相似文献   

20.
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号