首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowledge about biodiversity remains inadequate because most species living on Earth were still not formally described (the Linnean shortfall) and because geographical distributions of most species are poorly understood and usually contain many gaps (the Wallacean shortfall). In this paper, we developed models to infer the size and placement of geographical ranges of hypothetical non‐described species, based on the range size frequency distribution of anurans recently described in the Cerrado Biome, on the level of knowledge (number of inventories) and on surrogates for habitat suitability. The rationale for these models is as follow: (1) the range size frequency distribution of these species should be similar to the range‐restricted species, which have been most recently described in the Cerrado Biome; (2) the probability of new discoveries will increase in areas with low biodiversity knowledge, mainly in suitable areas, and (3) assuming range continuity, new species should occupy adjacent cells only if the level of knowledge is low enough to allow the existence of undiscovered species. We ran a model based on the number of inventories only, and two models combining effects of number of inventories and two different estimates of habitat suitability, for a total of 100 replicates each. Finally, we performed a complementary analysis using simulated annealing to solve the set‐covering problem for each simulation (i.e. finding the smallest number of cells so that all species are represented at least once), using extents of occurrence of 160 species (131 real anuran species plus 29 new simulated species). The revised reserve system that included information about unknown or poorly sampled taxa significantly shifted northwards, when compared to a system based on currently known species. This main result can be explained by the paucity of biodiversity data in this part of the biome, associated with its relatively high habitat suitability. As a precautionary measure, weighted by the inferred distribution data, the prioritization of a system of reserves in the north part of the biome appears to be defensible.  相似文献   

2.
The City of Cape Town (City) covers 2460 km2 in the southwestern corner of the Cape Floristic Region biodiversity hotspot. Established in 1654, by 1700 there were no animals larger than 50 kg within 200 km of the City. However, apart from an appreciation that timber and firewood were becoming scarce, it was only in the 1930s that the first farm near Cape Point was set aside for conservation. Table Mountain was declared a National Monument in 1958, while it was largely covered by pine and gum plantations. Conservation of the montane areas thereafter expanded, whereas the lowlands were largely ignored, except for a few bird sanctuaries. Only in 1982 was the plight of the lowlands highlighted. Although ad hoc conservation planning was undertaken subsequently, 1997 saw the first priority categorization and conservation plan. The current situation is perilous: a huge effort will be required to meet basic conservation targets for the lowland vegetation types and threatened species. Local and international partners and funders will be key to achieving this. In eight of the City's 19 national vegetation types the minimum conservation targets are not achievable. Of the 3250 plant species estimated to occur in the City, 13 are extinct and 319 are threatened according to the IUCN Red List: this is 18% of the threatened Red List species in South Africa. Now for the first time, implementation is being attempted holistically across the metropole with discussion between internal City and external stakeholders to implement the conservation plan. However, the interim plans towards achieving this — that 60% of the unproclaimed target is secured by 2014, requires that over 40 km2 be conserved per annum. This leaves 340 km2 that should be secured by 2020 when projections from City spatial growth indicate that the last critical remnants will be urbanized.  相似文献   

3.
Ecological niche modeling (ENM) has become an important tool in conservation biology. Despite its recent success, several basic issues related to algorithm performance are still being debated. We assess the ability of two of the most popular algorithms, GARP and Maxent, to predict distributions when sampling is geographically biased. We use an extensive data set collected in the Brazilian Cerrado, a biodiversity hotspot in South America. We found that both algorithms give richness predictions that are very similar to other traditionally used richness estimators. Also, both algorithms correctly predicted the presence of most species collected during fieldwork, and failed to predict species collected only in very few cases (usually species with very few known localities, i.e., <5). We also found that Maxent tends to be more sensitive to sampling bias than GARP. However, Maxent performs better when sampling is poor (e.g., low number of data points). Our results indicates that ENM, even when provided with limited and geographically biased localities, is a very useful technique to estimate richness and composition of unsampled areas. We conclude that data generated by ENM maximize the utility of existing biodiversity data, providing a very useful first evaluation. However, for reliable conservation decisions ENM data must be followed by well-designed field inventories, especially for the detection of restricted range, rare species.  相似文献   

4.
We present a Markov chain model for land-use dynamics in a forested landscape. This model emphasizes the importance of coupling socioeconomic and ecological processes underlying landscape change. We assume that a forest is composed of many land parcels, each of which is in one of a finite list of land-use states. The land-use state of each land parcel changes stochastically. The transition probability is determined by two processes: the forest succession and the decision of landowners. The landowner tends to choose the land-use state which has a high expected discounted utility, i.e., the sum of the current and the future utilities of the land parcel. Landowners take the likelihood of future landscape changes into account when making decisions. We focus on a three-state model in which forested, agricultural, and abandoned states are considered. The land-use composition at equilibrium was analyzed and compared with the social optimum that maximizes the net benefit of all landowners in a society. We show that when landowners make a myopic choice focused on short-term benefits, their individual decisions tend to push the entire landscape toward an agricultural state even if the forested state represents the highest utility. This land-use composition at equilibrium is very different from the social optimum. A long-term management perspective and an enhanced rate of forest recovery can eliminate the discrepancy.  相似文献   

5.
Joedison Rocha 《Ibis》2023,165(1):17-33
The loss of interactions and ecosystem functions is a concerning by-product of pervasive Anthropocene species decline and extinction. Ecological interactions between species sustain the provision of ecosystem processes, especially those mediated by trophic relationships such as pollination and predation. At the local habitat scale, the diversity of natural food sources may increase the diversity of interactions, thus enhancing the stability of local communities and ecosystem functioning. Here I discuss the importance of bromeliads as a potential provider of additional trophic interactions with birds, a key animal group in the Neotropics. Based on 88 studies published between 1965 and 2020 across the Neotropical region, I observed that bromeliads act as ‘wildlife restaurants’ by providing an additional food source throughout the year in almost all Neotropical ecosystems for at least 162 bird species (mostly hummingbirds). These plants (both epiphytic and terrestrial forms) can provide nectar, flowers, water for drinking, invertebrates, small vertebrates, seeds, and fruits, as well as nest materials and substrates. Given these trophic relationships between bromeliads and birds, actions to restore the richness and abundance of these plants in changed habitats would potentially enhance the local diversity of birds. I discuss and recommend the use of bromeliad transplantations as a relevant conservation tool for birds and some implications for the maintenance of species and interaction diversity in natural and agricultural habitats.  相似文献   

6.
Land snails are an important yet often neglected component of Australia's biological diversity. Despite high levels of diversity within this group and the identification of many narrow range endemic species as being of conservation concern, there have been few detailed studies that document the ecology and conservation requirements of the group. A range of threats has been suggested, yet relatively few have been rigorously assessed. Whilst factors such as land clearing are readily apparent and have resulted in extinctions, other threats such as climate change are not well understood. This paper reviews studies conducted on terrestrial molluscs in Australia and highlights the need for further targeted ecological research, given the likely level of on-going threats. We urge researchers to apply rigorous approaches to data collection that will enable a deeper understanding of the factors governing distribution and abundance. Approaches used in other areas of conservation biology offer considerable scope for application to land snails and for the development of appropriate conservation strategies.  相似文献   

7.
Ecuador will experience a significant expansion of the oil industry in its Amazonian region, one of the most biodiverse areas of the world. In view of the changes that are about to come, we explore the conflicts between oil extraction interests and biodiversity protection and apply systematic conservation planning to identify priority areas that should be protected in different oil exploitation scenarios. First, we quantified the current extent of oil blocks and protected zones and their overlap with two biodiversity indicators: 25 ecosystems and 745 species (whose distributions were estimated via species distribution models). With the new scheme of oil exploitation, oil blocks cover 68% (68,196 km2) of the Ecuadorian Amazon; half of it occupied by new blocks open for bids in the southern Amazon. This region is especially vulnerable to biodiversity losses, because peaks of species diversity, 19 ecosystems, and a third of its protected zones coincide spatially with oil blocks. Under these circumstances, we used Marxan software to identify priority areas for conservation outside oil blocks, but their coverage was insufficient to completely represent biodiversity. Instead, priority areas that include southern oil blocks provide a higher representation of biodiversity indicators. Therefore, preserving the southern Amazon becomes essential to improve the protection of Amazonian biodiversity in Ecuador, and avoiding oil exploitation in these areas (33% of the extent of southern oil blocks) should be considered a conservation alternative. Also, it is highly recommended to improve current oil exploitation technology to reduce environmental impacts in the region, especially within five oil blocks that we identified as most valuable for the conservation of biodiversity. The application of these and other recommendations depends heavily on the Ecuadorian government, which needs to find a better balance between the use of the Amazon resources and biodiversity conservation.  相似文献   

8.
9.
Restoration of mangroves is often considered a way to minimize losses incurred from their decline and to provide additional services to coastal communities. However, the success of restoration programs is often focused on biological or ecological criteria. The situation is no exception in Bangladesh, which houses the world’s largest mangrove plantations. This study has been undertaken in a south-central estuarine island (Nijhum Dwip) of the Bangladesh coast and aims to understand societal perception on the achievements of a plantation program. Through 110 household interviews and seven group discussions, an assessment was conducted of peoples’ perception about major flora and fauna of the mangrove ecosystem, benefits derived from the forest, present condition of the forest, causes of degradation, and ways to improve the situation. Around one-fourth of the respondents mentioned that they were highly dependent on the ecosystem. The most important perceived benefits were: provision of raw materials, prevention against natural disasters, climate regulation and soil retention. However, the majority (>80%) of the respondents perceived the ecosystem to be degrading. Encroachment and illicit felling were identified as the main causes of such degradation. In order to arrest the continued degradation allowed by conventional forest management flaws, adaptive co-management has been recommended to conserve this ecosystem in a more equitable way.  相似文献   

10.
The loss of urban green space as a result of urbanization threatens the overall biodiversity of urban areas, and prompts us to consider the importance of existing urban nature more carefully. Because urban ecological systems are in intense interaction with human-social systems, it is fruitful to create an interdisciplinary research and planning framework to ensure the maintenance of biodiversity in urban areas. For this purpose, we adapted a suitable theoretical and conceptual scheme for the setting of Finnish urban development, which provides an example of a situation where a lot of nature has so far remained inside and around urban area. The adapted scheme focuses on the land use change as a result of urban land use planning and development, and may provide a way to address the important variables and feedback mechanisms between information flowing from ecological systems and drivers from the social system. Furthermore, we outlined a more specific framework around the Finnish urban detailed planning process in order to study the interactions between these systems further. After addressing ecology-oriented questions of quantity, quality and needs of urban nature, and human-oriented drivers, such as flow and incorporation of information, knowledge, values and institutions, we identified several challenges in integrating the components of ecological and social systems. Creating common conceptual ground for different actors and disciplines, improving communication in the process, matching contradictory values and perceptions, and improving stakeholder participation would be in the best interest of nature and people of urban areas.  相似文献   

11.
Particularly in the temperate climate zone many forests have, at some moment in their history, been used as agriculture land. Forest cover is therefore often not as stable as it might look. How forest plant communities recovered after agriculture was abandoned allows us to explore some universal questions on how dispersal and environment limit plant species abundance and distribution. All studies looking at the effects of historical land use rely on adequate land use reconstruction. A variety of tools from maps, archival studies, and interviews to field evidence and soil analyses contribute to that. They allow us to distinguish ancient from recent forests and many studies found pronounced differences in forest plant species composition between them. A considerable percentage of our forest flora is associated with ancient forests. These ancient forest plant species (AFS) all have a low colonization capacity, suggesting that dispersal in space (distance related) and time (seed bank related) limit their distribution and abundance. However recent forests generally are suitable for the recruitment of AFS. There is clear evidence that dispersal limitation is more important than recruitment limitation in the distribution of AFS. Dispersal in time, through persistent seed banks, does not play a significant role. Ancient forests are not necessary more species-rich than recent forest, but if diversity is limited to typical forest plant species then ancient forests do have the highest number of plant species, making them highly important for nature conservation. The use of molecular markers, integrated approaches and modelling are all part of the way forward in this field of historical ecology.  相似文献   

12.
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range‐wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old‐growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation‐based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.  相似文献   

13.
The value of biodiversity lies in its option value for the future, the greater the complement of contemporary biodiversity conserved today, the greater the possibilities for future biodiversity because of the diverse genetic resource needed to ensure continued evolution in a changing and uncertain world. From this perspective, biodiversity option value can be equated with richness in the different features expressed by species. An individual species of greater value is one contributing more novel features to a given subset. The feature diversity of species and communities is difficult to estimate directly, but can be predicted by the phylogenetic relationships among the species. The ‘Phylogenetic Diversity’ measure (PD) (Faith, 1992a) estimates the relative feature diversity of any nominated set of species by the sum of the lengths of all those branches spanned by the set. These branch lengths reflect patristic or path‐length distances. This study first reviews and expands on some of the properties of PD, and develops simple modifications of the measure (δnPD and enPD) to enable capture of both the phylogenetic relatedness of species and their abundances in each sample. Then the application of PD, δnPD and enPD to a wide range of conservation and resource management issues is demonstrated using avian case studies. Supertree construction procedures (matrix representation using parsimony analysis; average consensus) were used to combine the extensive DNA‐DNA hybridization tree of Sibley & Ahlquist (1990) with numerous, recently published phylogenetic reconstructions to derive a phylogenetic tree for the global avian fauna. Using this supertree as a systematic framework, the utility of PD was demonstrated in four case studies: (i) state of the environment reporting, with changes in avian faunas resulting from extinctions quantified as indicators of the state of biodiversity at Global, New Zealand and Waikato region scales, and changes in available habitat quantified as indicators of pressures on biodiversity in the Waikato region; (ii) setting priorities for threatened species management, with PD as a measure of option value integrated with information on survivorship expectations to develop a ranking among threatened New Zealand forest bird species; (iii) monitoring biotic response to management, with data from 5‐minute counts used to analyse changes in forest bird communities under three management regimes in New Zealand; and (iv) selection of indicator species, with PD used to objectively identify subsets of species in the Global, New Zealand and Waikato avian faunas that comprise a high proportion of the option value in those faunas.  相似文献   

14.
Many habitat patches in tropical landscapes have become less suitable for wildlife due to an increase in anthropogenic disturbances. An index of habitat suitability based on the ecological factors that collectively determine the suitability of an organism's habitat is important for conservation planning. However, a widely accepted and comprehensive multi-criteria habitat suitability index for umbrella species is still lacking, particularly in areas where information related to the biology and ecology of the species of interest is not available. Therefore we develop preliminary habitat maps and measure the degree of habitat suitability for large mammals, focusing on four umbrella species in the State of Selangor, Peninsular Malaysia: Panthera tigris jacksoni (Malayan tiger), Tapirus indicus (Malayan tapir), Helarctos malayanus malayanus (Malayan sun bear), and Rusa unicolor cambojensis (sambar deer). The former two are endangered and the latter two are vulnerable according to the IUCN Red List. The suitability of habitat patches for each species was measured across the entire study area as well as in nine wildlife protected areas by integrating GIS data and expert opinion. Expert opinions were used as the source of information regarding the stresses faced by the species because there was insufficient information available from ground surveys.We developed an index and maps of habitat suitability for each species, which were then integrated to represent a combined index (ranging from 0 to 27) and spatially explicit maps of the area's habitat suitability for large mammals. The average large mammal habitat suitability index value of the State of Selangor (9) indicates that many habitat patches have become unsuitable for such species. Of the nine wildlife protected areas, Fraser's Hill (22), Sungai Dusun (22), and Bukit Kutu (21) are very suitable; Klang Gate (20) and Templers Park (17) are suitable; and the remaining four are unsuitable for large mammals. We assume that this preliminary habitat suitability index and mapping are useful for conservation planning of wildlife habitats at both landscape and regional scales, as well as providing an initial foundation for revision by future research with significant new information.  相似文献   

15.
Effective conservation management should target appropriate conservation units, but evolutionarily and genetically divergent lineages within nominal taxa are often unrecognized. The south‐western Australian biodiversity hotspot may harbour many cryptic taxa, as it contains many plant species with naturally fragmented population distributions. Using microsatellite markers, we tested the hypothesis that disjunct population groups in the rare species Eremophila microtheca and E. rostrata (Scrophulariaceae: Myoporeae) are highly genetically divergent and represent separate evolutionarily significant units (ESUs). Chromosome counts indicated that all individuals assessed were diploid (2n = 36). Genetic differentiation among disjunct population groups was highly significant (P < 0.001) for both E. microtheca (FST = 0.301–0.383; Dest = 0.756–0.774) and E. rostrata (FST = 0.325–0.346; Dest = 0.628–0.660), and was similar to their differentiation from allied species. These results, including high incidences of private alleles, suggest historical divergence among cryptic taxa within E. microtheca and E. rostrata. Population groups in E. rostrata have recently been taxonomically recognized as two subspecies. Our study suggests that E. microtheca should also be reassessed as two taxa or considered as two ESUs, and the southern occurrence should be listed as Critically Endangered. We suggest a precautionary approach for flora in this and similar landscapes, whereby historically wide geographical disjunctions are assumed to indicate separate units for conservation. © 2014 State of Western Australia. Botanical Journal of the Linnean Society © 2014 The Linnean Society of London, 2015, 177 , 96–111.  相似文献   

16.
Aim Phylogeographical studies in the Brazilian Atlantic Forest (BAF) have mostly included species associated with forest habitats, whereas taxa associated with grassland and sand‐dune plant communities have so far been largely overlooked. This study examines the phylogeography of the orchid Epidendrum fulgens, which occurs on coastal sand dunes and granitic outcrops, in order to identify major genetic divergences or disjunctions across the range of the species and to investigate the genetic signatures of past range contractions and expansions. Location Southern and south‐eastern seashore vegetation along the BAF biome, and granitic and arenitic outcrops that occur in the subtropical grassland plant communities located south of the BAF. Methods Nine nuclear and four plastid microsatellite loci were used to genotype 424 individuals from 16 populations across the distributional range of E. fulgens. For both sets of markers, we estimated genetic diversity and population differentiation, testing for a north–south gradient of genetic diversity. The plastid haplotype network and a Bayesian assignment analysis of nuclear markers were used to infer population structure. Past demographic changes were investigated using a coalescence approach. Results A deep disjunction was found between northern populations within the BAF and southern populations outside the BAF that occur on granitic and arenitic outcrops. Recent demographic reductions were detected in northern populations on coastal sands. Such demographic changes were not expected for those populations, as previous studies with forest species had found evidence of population expansion in the same areas. Higher genetic diversity was found in southern populations on granite, in contrast to patterns observed in previous studies of forest species. Main conclusions The results are consistent with the long‐term persistence of E. fulgens. Bottlenecks were detected in populations from areas where population expansion events have been detected in other plant (and animal) species, suggesting that forest expansion after the Last Glacial Maximum played a role in the population fragmentation and decrease in genetic diversity in E. fulgens. A substantial genetic division in E. fulgens corresponds to the ‘Portal de Torres’, a region that demarcates the northern limits of subtropical grassland plant communities and the southern limits of the BAF.  相似文献   

17.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

18.
19.
The species composition, reproductive ecology, and patterns of activitywere determined for an anuran assemblage of an area of subtropical montaneforest in northwest Argentina. Twenty-four species were recorded at ParqueNacional Calilegua, Province of Jujuy. This study reflects a 75% increase in thenumber of species reported in previous surveys. Most species inhabiting the parkare mainly from adjacent Chacoan regions and only six taxa are known to beendemic from montane forest areas. Most species are aquatic breeders, and theabsence of many forest reproductive modes is noticeable. Although baselineinformation to compare former community composition was lacking, comparisonsbased on museum specimens revealed no evidence of local population extinctions.Immediate intensive monitoring is needed to quantitatively address amphibianpopulation fluctuations and to examine the effectiveness of present-day montaneforest protection. Although long-term population monitoring and documentation ofspecies declines is lacking, I propose a list of seven species of conservationconcern in order to assist and promote future monitoring programs.  相似文献   

20.
Interactions with wildlife can contribute to biodiversity conservation outcomes, though safety and accessibility considerations limit animal encounters from being a viable strategy. This investigation explores the feasibility of mobile augmented reality to facilitate interactions with wildlife and encourage biodversity conservation. A mobile augmented reality experience (Snapchat lens), titled “Penguin Rescue!”, was created to allow users to rehabilitate an oil-slicked virtual penguin. Study 1 distributed the lens globally to Snapchat users (N = 63,605) who spent an average of 47 s rehabilitating the penguin; psychographic data showed pro-environmental interests were not associated with the lens’ use. Study 2 employed a within-subjects experimental design (N = 80) to examine the effects of Penguin Rescue! on conservation outcomes. Results showed that the interaction increased connectedness with the species. Moreover, social presence and plausibility served as key mechanisms contributing to environmental concern and behavioral intentions. Overall, results clarify how biophilic interactions via augmented reality can benefit biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号