首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
范泽孟 《生态学报》2021,41(20):8178-8191
如何模拟和揭示青藏高原植被生态系统垂直分布在全球气候变化驱动下的时空变化情景,对定量解析青藏高原陆地生态系统对气候变化响应效应具有重要意义。该论文基于Holdridge life zone (HLZ)模型,结合数字高程模型(DEM)数据,改变模型输入参数模式,发展了改进型HLZ生态系统模型。结合1981-2010(T0)时段的气候观测数据和IPCC CMIP5 RCP2.6、RCP4.5、RCP8.5三种情景2011-2040(T1)、2041-2070(T2)、2071-2100(T3)三个时段气候情景数据,实现了青藏高原植被生态系统垂直分布的时空变化情景模拟。引入生态系统平均中心时空偏移趋势模型和生态多样性指数模型,定量揭示了青藏高原植被生态系统在不同垂直带上的时空变化情景。结果显示:青藏高原共有16种植被生态系统类型;冰雪/冰原、高山潮湿苔原和亚高山湿润森林为青藏高原主要的植被生态系统类型,其面积之和占到了青藏高原总面积的56.26%;高山干苔原、亚高山潮湿森林、山地灌丛、山地湿润森林和荒漠等对气候变化的敏感性总体上高于其它类型;在T0-T3期间,青藏高原的高山湿润苔原、高山干苔原、荒漠呈持续减少趋势,平均每10年将分别减少1.96×104km2、0.15×104km2和1.58×104km2;亚高山潮湿森林、山地湿润森林和山地灌丛呈持续增加趋势,平均每10年将分别增加3.42×104km2、2.98×104km2和1.19×104km2;RCP8.5情景下青藏高原的植被生态系统平均中心的偏移幅度最大,RCP4.5情景下的偏移幅度次之,而RCP2.6情景下的偏移幅度最小。另外,在三种气候变化情景驱动下,青藏高原植被生态系统的生态多样性呈减少趋势。总之,未来不同情景的气候变化将直接影响青藏高原植被生态系统的时空分布格局及其生态多样性,气候变化强度越高,影响就越大,而且气候变化对青藏高原植被生态系统的影响呈现出从低海拔到高海拔递增的影响效应。  相似文献   

2.
不同SSP-RCP情景下中国生态系统服务价值评估   总被引:1,自引:0,他引:1  
定量评估生态系统服务价值是人类合理利用和管理生态系统的重要依据,未来气候情景下土地利用变化模拟及其对生态系统服务价值的影响评估对于区域生态系统服务管理、开展生态功能区划及减缓和适应气候变化等方面具有重要意义。基于最新IPCC共享社会经济路径(SSPs)和典型浓度路径(RCPs)的科学组合情景模拟得到的土地利用情景数据,对2020—2050年我国生态系统服务价值进行估算,并对2050年生态系统服务间的权衡与协同关系进行讨论,主要得到以下结论:生态系统服务价值(ESV)在2020—2050年表现为SSP1-RCP2.6>SSP2-RCP4.5>SSP3-RCP6.0,SSP1-RCP2.6情景下2020年ESV为12.39×104亿元,2050年ESV为12.34×104亿元;SSP2-RCP4.5情景下2020年ESV为12.17×104亿元,2050年ESV为12.11×104亿元;SSP3-RCP6.0情景下2020年ESV为12.02×104亿元,2050年ES...  相似文献   

3.
全球气候变暖对陆地生态系统尤其是森林生态系统有着重要的影响,气温升高、辐射强迫的增强将显著改变森林生态系统的结构和功能.南方人工林作为我国森林的重要组成部分,对气候变化的响应日益强烈.为了探究未来气候情景下我国南方人工林对气候变化的响应,降低未来气候变化对人工林可能带来的损失,本研究采用3种最新的气候情景—典型浓度排放路径情景(RCP2.6情景、RCP4.5情景、RCP8.5情景)预估数据,应用生态系统过程模型PnET-Ⅱ和空间直观景观模型LANDIS-Ⅱ模拟2014—2094年间湖南省会同森林生态实验站磨哨实验林场森林的地表净初级生产力(ANPP)、物种建立可能性(SEP)和地上生物量的变化.结果表明: 不同森林类型的SEP和ANPP对气候变化的响应有明显的差异,各森林类型对气候变化的响应程度表现为: 对于SEP,在RCP2.6和RCP4.5情景下,人工针叶林>天然阔叶林>人工阔叶林;在RCP8.5情景下,天然阔叶林>人工阔叶林>人工针叶林.对于ANPP,在RCP2.6情景下,人工阔叶林>天然阔叶林>人工针叶林;在RCP4.5和RCP8.5情景下,天然阔叶林>人工阔叶林>人工针叶林.人工针叶林的地上生物量在2050年左右开始下降,天然阔叶林和人工阔叶林整体呈现上升趋势.2014—2094年,研究区地上总生物量在不同气候情景下增加幅度不同,RCP2.6情景下增加了68.2%,RCP4.5情景下增加了79.3%,RCP8.5情景下增加了72.6%.3种情景下的总地上生物量大小排序为: RCP4.5> RCP8.5> RCP2.6.我们认为,适当的增温将有助于未来研究区森林总地上生物量的积累,但过度的增温也可能会阻碍森林的生产和生态功能的持续发展.  相似文献   

4.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   

5.
黄豪奔  徐海量  林涛  夏国柱 《生态学报》2022,42(7):2798-2809
气候变化是干旱区植被变化的重要驱动因素,探究干旱区气候与植被关系的时空变化,有助于理解生态系统演化特征。基于MODIS-NDVI与CRU数据集中气候数据(降水、平均气温、最高气温、最低气温、水汽压及潜在蒸散),采用Sen+Mann-kendall、Hurst指数及相关分析法,在不同时间尺度评价了阿勒泰地区NDVI的时空变化特征及其对气候变化的响应。结果表明:(1)在年尺度上,植被NDVI整体呈上升趋势,但存在弱反持续特征。区域内植被退化现象严重(12.11%),植被改善区域与退化区域呈破碎化分布。(2)月尺度与季尺度上,NDVI与降水、气温、极端气温、水汽压和潜在蒸散呈正相关,其中降水因素在季尺度上的相关性高于月尺度。(3)不同土地利用方式下NDVI与气候因子的滞后效应表现为短期正效应与长期负效应。  相似文献   

6.
Climate change is driving rapid and widespread erosion of the environmental conditions that formerly supported species persistence. Existing projections of climate change typically focus on forecasts of acute environmental anomalies and global extinction risks. The current projections also frequently consider all species within a broad taxonomic group together without differentiating species-specific patterns. Consequently, we still know little about the explicit dimensions of climate risk (i.e., species-specific vulnerability, exposure and hazard) that are vital for predicting future biodiversity responses (e.g., adaptation, migration) and developing management and conservation strategies. Here, we use reef corals as model organisms (n = 741 species) to project the extent of regional and global climate risks of marine organisms into the future. We characterise species-specific vulnerability based on the global geographic range and historical environmental conditions (1900–1994) of each coral species within their ranges, and quantify the projected exposure to climate hazard beyond the historical conditions as climate risk. We show that many coral species will experience a complete loss of pre-modern climate analogs at the regional scale and across their entire distributional ranges, and such exposure to hazardous conditions are predicted to pose substantial regional and global climate risks to reef corals. Although high-latitude regions may provide climate refugia for some tropical corals until the mid-21st century, they will not become a universal haven for all corals. Notably, high-latitude specialists and species with small geographic ranges remain particularly vulnerable as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive and migratory responses). Predicted climate risks are amplified substantially under the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for stringent emission controls. Our projections of both regional and global climate risks offer unique opportunities to facilitate climate action at spatial scales relevant to conservation and management.  相似文献   

7.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

8.
Distribution and abundance under climate change of particularly non-timber forest product tree species is vital since they sustain many livelihoods, especially in rural sub-Saharan Africa. The aim of the study was to determine the current and future natural range of mopane (Colophospermum mopane (J. Kirk ex Benth.) J. Léonard, Fabaceae), a dominant tree species in mopane woodlands of southern Africa. An ensemble model was built in ‘biomod2’ from eight algorithms and used to estimate the current and future distribution. Seven bioclimatic variables and 269 occurrence records were used to calibrate individual models that were later combined into an ensemble model. The ensemble model was projected to two time periods, 2041–2060 and 2081–2100, under two shared socio-economic pathways (SSPs), SSP2-4.5 and SSP5-8.5, and three general circulation models (GCMs). The ensemble model showed high performance (KAPPA = 0.770, ROC = 0.961, TSS = 0.792, ACCURACY = 0.900). A map of the current distribution shows occurrence predominantly in low-lying areas, including the Zambezi, Save and Limpopo valleys, Okavango and Cuvelai basins, and in southern and central Mozambique. Projection maps show expansion under all SSPs, GCMs and time periods. Averaged across GCMs in 2041–2060, the range expanded by 22.37% under SSP2-4.5, and by 19.94% under SSP5-8.5. In 2081–2100, the range expanded by 20.43% under SSP2-4.5, and by 27.62% under SSP5-8.5. Notably, the range expansion was highest under SSP5-8.5, an SSP that envisages unmitigated greenhouse gas release and the largest mean global temperature increase. It is highly likely that mopane is not directly threatened by climate change. Indirect climate change threats, however, remain uncertain.  相似文献   

9.
The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the response of vegetation activity, e.g., forest greenness and tree growth, to climate change, we investigated spatiotemporal variations in two independent data sets containing the dendroecological information for this region over the past 30 years. These indices are the normalized difference vegetation index (NDVI3g) and the tree‐ring width index (RWI), both of which showed significant spatial variability in past trends and responses to climate changes. These trends and responses to climate change differed significantly in the ecosystems of the circumarctic (latitude higher than 67°N) and the circumboreal forests (latitude higher and lower than 50°N and 67°N, respectively), but the way in which they differed was relatively similar in the NDVI3g and the RWI. In the circumarctic ecosystem, the climate variables of the current summer were the main climatic drivers for the positive response to the increase in temperatures showed by both the NDVI3g and the RWI indices. On the other hand, in the circumboreal forest ecosystem, the climate variables of the previous year (from summer to winter) were also important climatic drivers for both the NDVI3g and the RWI. Importantly, both indices showed that the temperatures in the previous year negatively affected the ecosystem. Although such negative responses to warming did not necessarily lead to a past negative linear trend in the NDVI3g and the RWI over the past 30 years, future climate warming could potentially cause severe reduction in forest greenness and tree growth in the circumboreal forest ecosystem.  相似文献   

10.
Climate change risks for net primary production of ecosystems in China   总被引:1,自引:0,他引:1  
Few studies have investigated ecosystem risk under climate change from the perspective of critical thresholds. We presented a framework to assess the climate change risk on ecosystems based on the definition of critical thresholds. Combined with climate scenario, vegetation, and soil data, the Atmosphere Vegetation Interaction Model version 2 was used to simulate net primary productivity in the period of 1961–2080. The thresholds of dangerous and unacceptable impacts were then defined, and climate change risks on ecosystems in China were assessed. Results showed that risk areas will be closely associated with future climate change and will mainly occur in the southwest and northwest areas, Inner Mongolia, the southern part of the northeast areas, and South China. The risk regions will expand to 343.66 Mha in the long term (2051–2080), accounting for 35.80% of China. The risk levels on all ecosystems (eco-regions) are likely to increase continually. The ecosystems of wooded savanna, temperate grassland, and desert grassland, which typically exhibit strong water stress, will have the maximum risk indices in the future. The Northwest Region is likely to be the most vulnerable because of precipitation restrictions and obvious warming. By contrast, Qinghai–Tibet Region will not be so vulnerable to future climate change.  相似文献   

11.
Despite recurrent emphasis on their ecological and economic roles, the importance of high trophic levels (HTLs) on ocean carbon dynamics, through passive (fecal pellet production, carcasses) and active (vertical migration) processes, is still largely unexplored, notably under climate change scenarios. In addition, HTLs impact the ecosystem dynamics through top-down effects on lower trophic levels, which might change under anthropogenic influence. Here we compare two simulations of a global biogeochemical–ecosystem model with and without feedbacks from large marine animals. We show that these large marine animals affect the evolution of low trophic level biomasses, hence net primary production and most certainly ecosystem equilibrium, but seem to have little influence on the 21st-century anthropogenic carbon uptake under the RCP8.5 scenario. These results provide new insights regarding the expectations for trophic amplification of climate change through the marine trophic chain and regarding the necessity to explicitly represent marine animals in Earth System Models.  相似文献   

12.
我国重要的北方针叶林地区大兴安岭是林火高发地区.受气候变暖影响,该地区林火发生频率将会发生显著变化.模拟人为火的发生分布与影响因素之间的关系、加强气候变化下人为火的发生分布预测,对于林火管理和减少森林碳损失具有重要作用.本文采用点格局分析方法,基于大兴安岭1967—2006年的火烧数据,建立人为火空间分布与影响因素之间的关系模型,该模型以林火发生次数为因变量,选取非生物因子(年均温和降水量、坡度、坡向和海拔)、生物因子(植被类型)和人为活动因子(距离道路距离、距离居民点距离、道路密度)共9个因子为自变量.并采用RCP 2.6和RCP 8.5气候情景数据代替当前气候情景预测2050年大兴安岭人为火的空间分布状况.结果表明: 点格局模型能够较好地模拟人为火发生分布与空间变量的关系,可以预测未来气候下人为火的发生概率.其中,气候因子对人为火的发生具有明显的控制作用,植被类型、海拔和人为活动等因子对人为火的发生也具有重要影响.林火发生预测结果表明,未来气候变化下,南部地区的林火发生概率将进一步增加,北部和沿主要道路干线附近将成为新的人为火高发区.与当前相比,2050年大兴安岭人为火的发生概率将增加72.2%~166.7%.在未来气候情景下,人为火的发生更多受气候和人为活动因素的控制.  相似文献   

13.

Aim

To project the impact of climate change on dragonfly and damselfly diversity in West and Central Asia.

Location

West and Central Asia.

Time period

1900–2020 data used to predict distributions in 2070 and 2100.

Taxon studied

Odonata.

Methods

Based on 149,001 records, distribution models were created for 159 species using MaxEnt. Environmental variables consisted of climate variables taken from BIOCLIM, river data and soil data. The future climate data were obtained from CHELSA from CMIP6 climate models. The same variables were collected for three scenarios (SSP1-2.6, SSP3-7.0 and SSP5-8.5) of shared socioeconomic pathways for the years 2050–2070 and 2080–2100. For each scenario and period, diversity maps were prepared for six species groups: all species, Lentic, Lotic, Oriental, Afrotropical and Palaearctic species.

Results

Strong declines in diversity are expected in western Turkey, the Levant and Azerbaijan, and to a lesser extent in parts of Iran and southern Central Asia. An increase is expected in eastern Turkey and at higher elevations in Central Asia with a limited increase throughout the Arabian Peninsula. In contrast to expectations, a decrease in areas with <15 species was found. Faunal composition is predicted to show strong shifts, with Palaearctic species declining and Oriental and Afrotropical species increasing. No clear difference between the trend of lentic and lotic species is found, although there are clear spatial differences in trend between these groups.

Main Conclusions

Climate change will result in strong changes in diversity and distribution of dragonflies and damselflies in West and Central Asia with regional declines and increases. None of the species are predicted to go extinct based on the impact of climate change only, however, the combined impact of climate change and anthropogenic forces is likely to push some of the species to near extinction by 2100.  相似文献   

14.
内蒙古地处生态环境脆弱区,对气候变化尤为敏感。在全球气候变暖背景下,探究极端气候变化及其影响显得尤为重要。基于内蒙古地区115个气象站点1982—2020年的逐日气象数据,从强度、持续时间、频率3个维度出发计算了18个极端气候指数,在综合分析极端气候的时空变化特征的基础上,运用地理探测器和皮尔逊相关分析方法,定量评估极端气候对该区植被的影响。结果表明:(1)极端暖指数均呈增加趋势,说明1982—2020年期间内蒙古地区极端偏暖现象增多。(2)持续干旱日数与持续湿润日数呈减少趋势,说明39年来内蒙古地区连续性无降水天数和降水天数均减少。(3)极端气候指数与归一化植被指数(NDVI)的相关关系表现出明显的空间异质性,表明内蒙古不同区域NDVI对各极端气候指数的响应程度不同。(4)因子探测器结果表明极端降水指数相对于极端气温指数来说,对内蒙古植被生长变化的影响较大。研究结果可为内蒙古地区防灾减灾与生态修复工程提供一定的科学依据。  相似文献   

15.
The Caatinga is a botanically unique semi‐arid ecosystem in northeast Brazil whose vegetation is adapted to the periodic droughts that characterize this region. However, recent extreme droughts events caused by anthropogenic climate change have challenged its ecological resilience. Here, we evaluate how deforestation and protection status affect the response of the Caatinga vegetation to drought. Specifically, we compared vegetation responses to drought in natural and deforested areas as well as inside and outside protected areas, using a time‐series of satellite‐derived Normalized Difference Vegetation Index (NDVI) and climatic data for 2008–2013. We observed a strong effect of deforestation and land protection on overall vegetation productivity and in productivity dynamics in response to precipitation. Overall, deforested areas had significantly lower NDVI and delayed greening in response to precipitation. By contrast, strictly protected areas had higher productivity and considerable resilience to low levels of precipitation, when compared to sustainable use or unprotected areas. These results highlight the importance of protected areas in protecting ecosystem processes and native vegetation in the Caatinga against the negative effects of climate change and deforestation. Given the extremely small area of the Caatinga currently under strict protection, the creation of new conservation areas must be a priority to ensure the sustainability of ecological processes and to avoid further desertification.  相似文献   

16.
This study assesses the potential impacts of future global warming on the carbon budget of terrestrial ecosystems across monsoon Asia using the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) dataset. We used simulation results of two emission pathways (RCP2.6 and RCP8.5), climate projections of five climate models, and seven terrestrial biome models to analyze the changes in net primary production and carbon stocks in the South, Southeast, and East Asian subregions during the period 1981–2099. The simulations indicated that by the end of the 21st century, net primary production would increase by 9–45 % and ecosystem carbon storage would increase by 42–86 Pg C. The clearest climatic impacts were found when using the adaptation-oriented emission scenario (RCP8.5), which assumes a greater CO2 increase and a larger change in climatic conditions. Substantial disparities in temporal trajectories and spatial patterns were found in the estimated changes, owing to the uncertainties in the emission scenarios, climate projections, and ecosystem models. We attempted to derive consistent patterns throughout the simulations to specify potential hotspots of climatic impacts (e.g., soil carbon change in the southern Tibetan Plateau). Finally, we discuss changes to the climatic characteristics in the study region (e.g., a change in the rainy season), the implications for ecosystem services, and the need for collaborative field monitoring studies.  相似文献   

17.
In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS‐II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET‐II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010–2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad‐leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad‐leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types.  相似文献   

18.
 陆地生态系统对气候变化的响应及其脆弱性评价研究是当前全球变化领域的重要内容之一。该研究在生态系统过程模型的基础上,耦合了潜在 植被对气候变化的动态响应,模拟气候变化对潜在植被分布格局和生态系统主要功能的影响,以潜在植被的变化次数和变化方 向定义植被分布 对气候变化的敏感性和适应性,以生态系统功能特征量的年际变率及其变化趋势定义生态系统功能对气候变化的敏感性和适应性,进而对生态 系统的脆弱性进行定量评价,分析不同气候条件下我国陆地生态系统的脆弱性分布格局及其区域特点。结果表明,我国自然生态系统气候脆弱 性的总体特点为南低北高、东低西高,气候变化将会增加系统的脆弱性。采用政府间气候变化委员会排放情景特别报告国内和区域资源情景, 即IPCC-SRES-A2气候情景进行的预测模拟表明,到21世纪末我国不脆弱的生态系统比例将减少22%左右,高度脆弱和极度脆弱的生态系统所占的 比例较当前气候条件下分别减少1.3%和0.4%。气候变化对我国陆地生态系统的脆弱性分布格局影响不大。不同气候条件下,高度脆弱和极度脆 弱的自然生态系统主要分布在我国内蒙古、东北和西北等地区的生态过渡带上及荒漠-草地生态系统中。总体而言,华南及西南大部分地区的生 态系统脆弱性将随气候变化而有所增加,而华北及东北地区则有所减小。  相似文献   

19.
Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970–2000) and future (2081–2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081–2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.  相似文献   

20.
Benavides  Eva  Breceda  Aurora  Anadón  José D. 《Plant Ecology》2021,222(1):29-44

The Cactaceae is considered one of the most threatened taxa in the world. However, the extent to which climate change could compromise the conservation status of this group has rarely been investigated. The present study advances this issue under three specific aims: (1) to assess the impact of climate change on the distribution of endemic cacti species in the Baja California Peninsula (n?=?40), (2) to study how the impact of climate change is distributed in this group according to the species’ conservation status, and (3) to analyze how these impacts are organized from a biogeographical and functional perspective. We addressed these objectives under three socioeconomic emission pathways (RCP 2.6, 4.5, and 8.5), and using two extreme migration scenarios: full climate change tracking and no migration. Altogether, all socioeconomic emission pathways under the two extreme migration scenarios show consistency regarding the identity of the species most vulnerable to climate change, and depict a discrepant future scenario that has, on one hand, species with large potential habitat gains/stability (winners); and on the other, species with large habitat reductions (losers). Our work indicates that winner species have a tropical affinity, globose growth, and includes most of the currently threatened species, whereas loser ones are in arid and Mediterranean systems and are mostly non-threatened. Thus, current and future threat factors do not overlap in the biogeographic and taxonomic space. That reveals a worrisome horizon at supraspecific levels in the study area, since the total number of threatened species in the future might largely increase.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号