首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
van Geffen KG  Berg MP  Aerts R 《Oecologia》2011,167(4):1163-1175
As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.  相似文献   

2.
A ‘genes‐to‐ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome‐wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after‐life’ effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic–terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes.  相似文献   

3.
4.
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.  相似文献   

5.
Plants deploy various ecological strategies in response to environmental heterogeneity. In many forest ecosystems, plants have been reported to have notable inter- and intra-specific trait variation, as well as clear phylogenetic signals, indicating that these species possess a degree of phenotypic plasticity to cope with habitat variation in the community. Savanna communities, however, grow in an open canopy structure and exhibit little species diversification, likely as a result of strong environmental stress. In this study, we hypothesized that the phylogenetic signals of savanna species would be weak, the intraspecific trait variation (ITV) would be low, and the contribution of intraspecific variation to total trait variance would be reduced, owing to low species richness, multiple stresses and relatively homogenous community structure. To test these hypotheses, we sampled dominant woody species in a dry-hot savanna in southwestern China, focusing on leaf traits related to adaptability of plants to harsh conditions (year-round intense radiation, low soil fertility and seasonal droughts). We found weak phylogenetic signals in leaf traits and low ITV (at both individual and canopy-layer levels). Intraspecific variation (including leaf-, layer- and individual-scales) contributed little to the total trait variance, whereas interspecific variation and variation in leaf phenology explained substantial variance. Our study suggests that intraspecific trait variation is reduced in savanna community. Furthermore, our findings indicate that classifying species by leaf phenology may help better understand how species coexist under similar habitats with strong stresses.  相似文献   

6.
Recent work has demonstrated that the presence or abundance of specific genotypes, populations, species and phylogenetic clades may influence community and ecosystem properties such as resilience or productivity. Many ecological studies, however, use simple linear models to test for such relationships, including species identity as the predictor variable and some measured trait or function as the response variable without accounting for the nestedness of genetic variation across levels of organization. This omission may lead to incorrect inference about which source of variation influences community and ecosystem properties. Here, we explicitly compare this common approach to alternative ways of modeling variation in trait data, using simulated trait data and empirical results of common‐garden trials using multiple levels of genetic variation within Eucalyptus, Populus and Picea. We show that: 1) when nested variation is ignored, an incorrect conclusion of species effect is drawn in up to 20% of cases; 2) overestimation of the species effect increases – up to 60% in some scenarios – as the nested term explains more of the variation; and 3) the sample sizes needed to overcome these potential problems associated with aggregating nested hierarchical variation may be impractically large. In common‐garden trials, incorporating nested models increased explanatory power twofold for mammal browsing rate in Eucalyptus, threefold for leaf area in Populus, and tenfold for branch number in Picea. Thoroughly measuring intraspecific variation and characterizing hierarchical genetic variation beyond the species level has implications for developing more robust theory in community ecology, managing invaded natural systems, and improving inference in biodiversity–ecosystem functioning research. Synthesis Until recently, ecologists acknowledged the ubiquity of within‐species trait variation, but paid scant attention to how much it affects communities and ecosystems. Here, the authors used simulated trait data and common‐garden studies to demonstrate that we ignore intraspecific trait variation at our peril. In both simulated and experimental systems, in many cases ignoring intraspecific variation led to incorrect statistical inferences and inflated the effect size of species identity. This study shows that ecologists must characterize hierarchically nested genetic and phenotypic variation to fully understand the links between individual traits, community structure and ecosystem functioning.  相似文献   

7.
Investigations of how species compositional changes interact with other aspects of global change, such as nutrient mobilization, to affect ecosystem processes are currently lacking. Many studies have shown that mixed species plant litters exhibit non‐additive effects on ecosystem functions in terrestrial and aquatic systems. Using a full‐factorial design of three leaf litter species with distinct initial chemistries (carbon:nitrogen; C:N) and breakdown rates (Liriodendron tulipifera, Acer rubrum and Rhododendron maximum), we tested for additive and non‐additive effects of litter species mixing on breakdown in southeastern US streams with and without added nutrients (N and phosphorus). We found a non‐additive (antagonistic) effect of litter mixing on breakdown rates under reference conditions but not when nutrient levels were elevated. Differential responses among single‐species litters to nutrient enrichment contributed to this result. Antagonistic litter mixing effects on breakdown were consistent with trends in litter C:N, which were higher for mixtures than for single species, suggesting lower microbial colonization on mixtures. Nutrient enrichment lowered C:N and had the greatest effect on the lowest‐ (R. maximum) and the least effect on the highest‐quality litter species (L. tulipifera), resulting in lower interspecific variation in C:N. Detritivore abundance was correlated with litter C:N in the reference stream, potentially contributing to variation in breakdown rates. In the nutrient‐enriched stream, detritivore abundance was higher for all litter and was unrelated to C:N. Thus, non‐additive effects of litter mixing were suppressed by elevated streamwater nutrients, which increased nutrient content of all litter, reduced variation in C:N among litter species and increased detritivore abundance. Nutrients reduced interspecific variation among plant litters, the base of important food web pathways in aquatic ecosystems, affecting predicted mixed‐species breakdown rates. More generally, world‐wide mobilization of nutrients may similarly modify other effects of biodiversity on ecosystem processes.  相似文献   

8.
Madritch MD  Hunter MD 《Oecologia》2003,136(1):124-128
Anthropogenic forces are concurrently reducing biodiversity and altering terrestrial nutrient cycles. As natural populations decline, genetic diversity within single species also declines. The consequences of intraspecific genetic loss for ecosystem functions are poorly understood, and interactions among intraspecific diversity, nitrogen deposition, and nutrient cycling are unknown. We present results from an experiment that simulated both a decline in biodiversity and an increase in nitrogen deposition. In soil microcosms, we tested effects of variation in intraspecific litter diversity and nitrogen deposition on soil respiration and nitrogen leaching. Increases in intraspecific litter diversity increased soil respiration overall, with the greatest increases in respiration occurring under high nitrogen deposition. Nitrogen deposition increased the amount of inorganic nitrogen leached, while the amount of dissolved organic nitrogen leached was correlated with initial litter chemistry (lignin concentration) and remained independent of litter diversity and nitrogen deposition treatments. Our results demonstrate the potential for losses in genetic diversity to interact with other global environmental changes to influence terrestrial nutrient cycles.  相似文献   

9.
Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co‐occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual‐level body sizes and cumulative reproduction, population‐level abundance and biomass and ecosystem‐level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population‐ and ecosystem‐level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation.  相似文献   

10.
Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic–terrestrial linkages.  相似文献   

11.
The input of leaf litter resources is a major driver of ecosystem processes in terrestrial and freshwater habitats. Although variation exists in the quantity and composition of litter inputs due to natural and anthropogenic causes, few studies have examined how such variation influences the structure and composition of aquatic food webs. Using outdoor mesocosms, we examined the bottom–up effects of 10 chemically distinct tree litter species on microbial, algal, invertebrate and vertebrate fauna found in temperate ponds. We hypothesized that individual litter species, which differ in their traits, would differentially and predictably affect abiotic and biotic elements of pond communities. We further hypothesized that the presence of leaf litter, regardless of species, would elevate resource supply and increase the biomass of community members. Finally, we hypothesized that a mixture of litter species would have non‐additive effects on community responses. We followed the system for > 4 months and measured > 30 abiotic and biotic responses related to primary and secondary production. The different species of leaf litter had major effects on abiotic and biotic responses, including phytoplankton, periphyton, zooplankton, snails, amphipods and tadpoles. Most biological responses were negatively associated with soluble carbon content of litter, or litter decay rate. Other litter traits, including phenolic concentrations and litter C:N were of secondary importance but did exhibit both positive and negative associations with several responses. The absence of litter had pervasive effects on abiotic attributes, but did not promote substantial changes in organism biomass. Most responses to the litter mixture were additive. Our results suggest that changes in temperate forest composition can strongly affect pond communities.  相似文献   

12.
Ecosystem processes, such as plant litter decomposition, are known to be partly genetically determined, but the magnitude of genetic variation within local populations is still poorly known. We used micropropagated field-grown saplings of 19 Betula pendula genotypes, representing genetic variation in a natural birch population, to examine (1) whether genotype can explain variation in leaf litter decomposition within a local plant population, and (2) whether genotypic variation in litter decomposition is associated with genotypic variation in other plant attributes. We found that a local B. pendula population can have substantial genotypic variation in leaf litter mass loss at the early stages of the decomposition process and that this variation can be associated with genotypic variation in herbivore resistance and leaf concentrations of soluble proteins and total nitrogen (N). Our results are among the first to show that fundamental ecosystem processes can be significantly affected by truly intraspecific genetic variation of a plant species.  相似文献   

13.
Abstract Decomposition of the organic matter is a key process in the functioning of aquatic and terrestrial ecosystems, although different factors influence processing rates between and within these habitats. Most patterns were described for temperate regions, with fewer studies in tropical, warmer sites. In this study, we carried out a factorial experiment to compare processing rates of mixed species of leaf litter between terrestrial and aquatic habitats at a tropical site, using ?ne and coarse mesh cages to allow or prevent colonization by macroinvertebrates. The experiment was followed for 10 weeks, and loss of leaf litter mass through time was evaluated using exponential models. We found no interaction between habitat and mesh size and leaf litter breakdown rates did not differ between ?ne and coarse mesh cages, suggesting that macroinvertebrates do not influence leaf litter decomposition in either habitat at our studied site. Leaf breakdown rates were faster in aquatic than in terrestrial habitats and the magnitude of these differences were comparable to studies in temperate regions, suggesting that equivalent factors can influence between‐habitat differences detected in our study.  相似文献   

14.
Abstract We investigated the effects of biodiversity loss across trophic levels and across ecosystems (terrestrial to aquatic) on ecosystem function, in a detritus‐based tropical food web. Diversities of consumers (stream shredders) and resources (leaf litter) were experimentally manipulated by varying the number of species from 3 to 1, using different species combinations, and the effects on leaf breakdown rates were examined. In single‐species shredder treatments, leaf diversity loss affected breakdown rates, but the effect depended on the identity of the leaves remaining in the system: they increased when the most preferred leaf species remained, but decreased when this species was lost (leaf preferences were the same for all shredders). In multi‐species shredder assemblages, breakdown rates were lower than expected from single‐species treatments, suggesting an important role of interspecific competition. This pattern was also evident when oneleaf species was available but not with higher leaf diversity, suggesting that lowered leaf diversity promotes competitive interactions among shredders. The influence of diversity and identity of species across trophic levels and ecosystems on stream functioning points to complex interactions that may well be reflected in other types of ecosystem.  相似文献   

15.
16.
The impact of biological invasions on local biodiversity is well established, but their impact on ecosystem functioning has only been sketchily documented. However, biological invasions may impede services provided by aquatic ecosystems, such as, for example, the decomposition of organic matter, a key process in most small streams. To address this question, we experimentally quantified the leaf litter breakdown activity of native and invasive amphipod species, which are keystone species in aquatic ecosystems. The breakdown rate of each species was used to estimate the potential leaf litter recycling in the Rhône and Meurthe Rivers in sites occupied solely by native species and sites dominated by invasive species. We found that invaders were not able to compensate for the activity of native species and that the replacement of native species led to a decrease of at least 66% in the rate of leaf litter recycling. Our approach provides empirical evidence of the functional impact of non-indigenous species on leaf litter recycling, using standard protocols and literature data.  相似文献   

17.
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach--integrating different biological scales of trait variation--may provide a better understanding of the mechanisms involved in the structure of communities.  相似文献   

18.
Predictions of effects of global climate change include decreased runoff for many parts of the world, which will result in drying of streams. Information of the effects of drought on aquatic ecosystems is limited and little is known of the effects on ecosystem functions. Our main objective was to measure the direct effects of drought on leaf litter breakdown by invertebrate shredders in a controlled laboratory experiment. We hypothesized a decreased breakdown at high drought level. Single-species and multi-species treatments with three shredder species (Asellus aquaticus, Limnephilus bipunctatus, and L. flavicornis) were set up in an experiment with three drought level treatments, control, medium, and high drought (6 cm water level, 1 cm water level, and water level below sediment surface, respectively). Breakdown measured as leaf litter loss was significantly lower in both medium and high drought treatments compared to the control. Previously, decreased breakdown due to drying has been reported, but attributed to low densities of invertebrate shredders. We show that even when shredders are present, drought decreases the breakdown. Drought treatments also induced earlier pupation for the caddisfly L. flavicornis. Shifts in species phenology due to drought, e.g., earlier emergence, may affect species ability to adult survival and reproduction. Shifts in timing of emergence may also affect terrestrial food webs, where emerging aquatic insects may constitute an important food subsidy. Our knowledge of the complex effects of droughts in aquatic systems is limited with an urgent need of extended knowledge of the ecological effects of droughts on freshwater ecosystem functioning.  相似文献   

19.
To comprehend the potential consequences of biodiversity loss on the leaf litter decomposition process, a better understanding of its underlying mechanisms is necessary. Here, we hypothesize that positive litter mixture effects occur via complementary resource use, when litter species complement each other in terms of resource quality for detritivores. To investigate this, monocultures and mixtures of two leaf litter species varying in quality were allowed to decompose with and without a single macro-detritivore species (the terrestrial woodlice Oniscus asellus). Resource quality of the mixture was assessed by the mean concentration, the dissimilarity in absolute and relative concentrations, and the covariance between nitrogen (N), phosphorus (P) and calcium (Ca) supply. Our results clearly show that litter mixing effects were driven by differences in their resource quality for detritivores. In particular, complementary supply of N and P was a major driver of litter mixing effects. Interestingly, litter mixing effects caused by the addition of woodlice were predominantly driven by N dissimilarity, whereas in their absence, increased P concentration was the main driver of litter mixing effects. These results show that ultimately, litter diversity effects on decomposition may be driven by complementary resource use of the whole decomposer community (i.e., microbes and macro-detritivores).  相似文献   

20.
The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号