首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the genes involved in storage root formation of sweet potato (Ipomoea batatas), we performed a simplified differential display analysis on adventitious roots at different developmental stages of the storage root. The expression patterns were confirmed by semiquantitative RT-PCR analyses. As a result, 10 genes were identified as being developmentally regulated and were named SRF1-SRF10. The expression of SRF1, SRF2, SRF3, SRF5, SRF6, SRF7, and SRF9 increased during storage root formation, whereas the expression of SRF4, SRF8, and SRF10 decreased. For further characterization, a full-length cDNA of SRF6 was isolated from the cDNA library of the storage root. SRF6 encoded a receptor-like kinase (RLK), which was structurally similar to the leucine-rich repeat (LRR) II RLK family of Arabidopsis thaliana. RNA gel blot analysis showed that the mRNA of SRF6 was most abundantly expressed in the storage roots, although a certain amount of expression was also observed in other vegetative organs. Tissue print mRNA blot analysis of the storage root showed that the mRNA of SRF6 was localized around the primary cambium and meristems in the xylem, which consist of actively dividing cells and cause the thickening of the storage root.  相似文献   

2.
3.
To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.Published as Florida Agricultural Experimental Station Journal Series No. R-02576  相似文献   

4.
Aspects of resistance to sweet potato virus disease in sweet potato   总被引:3,自引:0,他引:3  
In field trials during the first and the second rainy season of 1996 in Uganda, whiteflies were similarly abundant and aphids were absent on three clones of sweet potato (NIS-93–63, cv. Tanzania and cv. New Kawogo) although the three clones differed considerably in their resistance to sweet potato virus disease (SPVD), a complex disease resulting from infection by both the aphid-borne sweet potato feathery mottle virus (SPFMV) and the whitefly-borne sweet potato chlorotic stunt virus (SPCSV). This suggests that vector resistance does not determine the relative SPVD resistance of these genotypes. SPFMV alone had only a low virus titre in sweet potato cvs Tanzania and New Kawogo, became increasingly difficult to detect in plants of these cultivars and was seldom acquired by aphids. However, this resistance to SPFMV was not apparent in plants which were also infected with SPCSV. Plants then had a high SPFMV titre, appeared unable to eliminate SPFMV and provided good sources for aphids to acquire it.  相似文献   

5.
Sweet potato virus disease (SPVD) was common (25–30% average incidences), and farmers recognised it as an important disease, in sweet potato crops in southern Mpigi, Masaka and Rakai Districts in Uganda, but SPVD was rare in Soroti and Tororo Districts. Whiteflies, which are the vector of sweet potato chlorotic stunt crinivirus (SPCSV) a component cause of SPVD, were correspondingly common on sweet potato crops in Mpigi and rare on crops in Tororo. However, aphids, which are the vectors of sweet potato feathery mottle potyvirus (SPFMV), the other component cause of SPVD, were not found colonising sweet potato crops, and itinerant alate aphids may be the means of transmission. Different sweet potato cultivars were predominant in the different districts surveyed and four local cultivars obtained from Kanoni in S. Mpigi, where whiteflies and SPVD were common, were more resistant to SPVD than four cultivars from Busia in Tororo District, where whiteflies and SPVD were rare. However, nationally released cultivars were even more resistant than the local cultivars from Kanoni. Yield results and interviews with farmers indicated that farmers in S. Mpigi were making compromises in their choice of cultivars to grow, some key factors being SPVD susceptibility, and the yield, taste, and marketability, duration of harvest and in-ground storability of the storage roots. These compromises need to be included in an assessment of yield losses attributable to SPVD.  相似文献   

6.
A method for regenerating plants from petiole protoplasts of the in vitro-raised sweet potato cultivar Jewel is described. Protoplast yields of 3.0–5.0×106 were obtained following 4–6 h digestion of 1- to 2-cm petioles (1 g fresh weight) with 1% Cellulase-R10, 2% Macerozyme-R10, and 0.3% Pectolyase Y-23 in a washing solution with 9% mannitol. A plating density of 105 protoplasts/ml was optimal for subsequent division. An initial division frequency of 12–15% was obtained in liquid or agarose-solidified KP8 culture medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.9 μm), and zeatin (2.3 μm). Colonies consisting of 100–200 cells were formed after 4 weeks in the dark at 24±2°C. The frequency of colony formation was improved by the gradual addition of fresh liquid KP8 medium of lower osmoticum. Protocalli (1–2 mm in diameter) were formed after an additional 4–6 weeks under continuous illumination and regular dilution with fresh culture medium. Morphogenic callus formed globular and heart-shaped embryos that developed into cotyledon stage embryos, following transfer of calli onto medium containing 2,4-D (11.3 μm) and benzylaminopurine (2.2 μm). Subsequently, embryo conversion to plantlets was obtained on basal medium with 2% sucrose and 3.5 μm gibberellic acid. Regenerated plantlets were successfully transplanted in soil. Mature plants appeared phenotypically normal. The same petiole protoplast populations showed transient expression of the gusA gene introduced using electroporation. Received: 10 October 1997 / Revision received: 10 February 1998 / Accepted: 2 March 1998  相似文献   

7.
Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear α(1,4)D-glucan polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic pathway.  相似文献   

8.
Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato   总被引:2,自引:0,他引:2  
The objective of this experiment was to study changes of antioxidants and antioxidative enzymes in the flooding-stressed sweet potato leaf, as affected by paclobutrazol (PBZ) treatment at 24 h prior to flooding. Sweet potato 'Taoyuan 2' were treated with 0 and 0.5 mg/plant of PBZ, afterwards subjected to non-flooding and flooding-stress conditions for 0, 1, 3, and 5 d, followed by a 2 d drainage period. The study was conducted as a factorial experiment in completely randomized blocks with three replications maintained within a screen house. Plants with various antioxidative systems responded differently to flooding stress according to the duration of the flooding period and subsequent drainage period. The increased levels of antioxidants and antioxidative enzymes observed on different days of flooding afforded the sweet potato leaf with improved flooding tolerance. Glutathione reductase activity in the leaf was significantly enhanced over 5 d continuous flooding followed by a drainage period, in comparison with non-flooding conditions. Under non-flooding conditions, antioxidative system of leaf was regulated and elevated by PBZ pre-treatment. PBZ treatment may enable sweet potato 'Taoyuan 2' to maintain the balance between the formation and the detoxification of activated oxygen species. Our results also show that under flooding-stress conditions, the level of 'Taoyuan 2' antioxidative system is linked to PBZ treatment. Pre-treating with PBZ may increase levels of various components of antioxidative systems after exposure to different durations of flooding and drainage, thus inducing flooding tolerance. PBZ exhibited the important function of enhancing the restoration of leaf oxidative damage under flooding stress after the pre-application of 0.5 mg/plant. These findings may have greater significance for farming in frequently flooded areas.  相似文献   

9.
A virus causing sunken veins on ‘Georgia Jet’ sweet potato, and yellow brittle leaves and stunting on Ipomoea setosa, was purified and a specific antiserum was prepared. Flexuous particles with a normal length of 850 nm and a diameter of 12 nm with an open helical structure typical of closteroviruses were observed. The virus particle protein has an apparent mol. wt of c. 34 kD. Double-stranded RNA isolated from SPSVV-infected I. setosa and subjected to electrophoresis in agarose consisted of one major band with an estimated Mr of 10.5 kbp and two minor bands with Mr of 9.0 and 5.0 kbp. Fibril-containing vesicles in phloem cells were observed in ultrathin sections of infected leaf tissues. The virus was transmitted by the whitefly Bemisia tabaci in a semi-persistent manner and by grafting, but not mechanically. The virus could be transmitted to various Ipomoea species, to Nicotiana clevelandii, N. benthamiana and Amaranthus palmeri. The virus did not react with an antiserum to lettuce infectious yellows virus. Based on particle morphology, serology and symptom expression, the virus appears unique and different from all other reported whitefly-transmitted closteroviruses. We propose it be named “sweet potato sunken vein virus” (SPSVV).  相似文献   

10.
【背景】病毒病是甘薯的一种重要病害,给甘薯生产带来了严重的经济损失,而生产中甘薯病毒病病原种类复杂多样。【目的】明确福建甘薯病毒病种类、分布及流行,对主要病毒进行多样性分析。【方法】从福建主要甘薯种植区采集病毒病样品,利用PCR/RT-PCR的方法对采集的样品进行病原检测,获得病毒序列,利用MEGA 6.0构建系统进化树进行遗传分析。【结果】从福建7个甘薯产区鉴定12种甘薯病毒,包括9种RNA病毒:甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)、甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)、甘薯G病毒(Sweet potato virus G,SPVG)、甘薯C病毒(Sweet potato virus C,SPVC)、甘薯2号病毒(Sweet potato virus 2)、甘薯褪绿斑病毒(Sweet potato chlorotic fleck virus,SPCFV)、甘薯潜隐病毒(Sweet potato latent virus,SPLV)、甘薯轻型斑点病毒(Sweetpotatomildspeakingvirus,SPMSV)、黄瓜花叶病毒(Cucumber mosaic virus,CMV),3种DNA病毒:甘薯卷叶病毒(Sweet potato leaf curl virus,SPLCV),甘薯无症状1号病毒(Sweet potato symptomless virus 1,SPSMV-1),甘薯杆状DNA病毒B (SPBV-B)。SPFMV、SPCSV、SPVG和SPLCV检出率最高,分别为50.28%、41.90%、35.75%和24.58%,CMV检出率最低,为2.79%,未检测到甘薯C-6病毒(SweetpotatoC-6)和甘薯轻型斑驳病毒(Sweetpotatomild mottle virus,SPMMV)。福建甘薯主要以2-6种病毒复合侵染为主,单一侵染率占14.39%,2种以上复合侵染占85.61%。福建SPFMV分离物存在EA、O和RC3种株系,SPCSV分离物存在WA1种株系,未发现EA株系,甘薯卷叶病毒分属于2个不同的株系群。【结论】福建甘薯病毒种类多样,以复合侵染为主,且存在多种株系,遗传结构复杂。  相似文献   

11.
The effects of electrolysis at room temperature on formation of sweet potato retrograded starch were studied by photographic method in the paper. The optimal parameters of electrolytic preparation of sweet potato retrograded starch were determined. The ratio between sweet potato starch and water was 10 g/100 mL with addition of NaCl 1.0 g/100 mL, pH value of the solution was 6.0 and the solution was electrolyzed for 30 min at 90 V at room temperature, then it was stored at 4 °C for 24 h after being autoclaved for 30 min at 120 °C, the retrogradation rate of sweet potato starch at this condition was 33.1%, which is 138% higher than that of control group. Four possible reasons are put forward to explain the results.  相似文献   

12.
Identification and distribution of viruses infecting sweet potato in Kenya   总被引:2,自引:0,他引:2  
Four hundred and forty-eight symptomatic and 638 asymptomatic samples were collected from sweet potato fields throughout Kenya and analysed serologically using antibodies to Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato mild mottle virus (SPMMV), Cucumber mosaic virus (CMV), Sweet potato chlorotic fleck virus (SPCFV), Sweet potato latent virus (SwPLV), Sweet potato caulimo-like virus (SPCaLV), Sweet potato mild speckling virus (SPMSV) and C-6 virus in enzyme-linked immunosorbent assays (ELISA). Only SPFMV, SPMMV, SPCSV, and SPCFV were detected. Ninety-two percent and 25% of the symptomatic and asymptomatic plants respectively tested positive for at least one of these viruses. Virus-infected plants were collected from 89% of the fields. SPFMV was the most common and the most widespread, detected in 74% of the symptomatic plants and 86% of fields surveyed. SPCSV was also very common, being detected in 38% of the symptomatic plants and in 50% of the fields surveyed. SPMMV and SPCFV were detected in only 11% and 3% of the symptomatic plant samples respectively. Eight different combinations of these four viruses were found in individual plants. The combination SPFMV and SPCSV was the most common, observed in 22% of symptomatic plants. Virus combinations were rare in the asymptomatic plants tested. Incidence of virus infection was highest (18%) in Kisii district of Nyanza province and lowest (1%) in Kilifi and Malindi districts of Coast province.  相似文献   

13.
The sweet potato sporamin promoter was used to control the expression in transgenic potato of the E. coli appA gene, which encodes a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The sporamin promoter was highly active in leaves, stems and different size tubers of transgenic potato, with levels of phytase expression ranging from 3.8 to 7.4% of total soluble proteins. Phytase expression levels in transgenic potato tubers were stable over several cycles of propagation. Field tests showed that tuber size, number and yield increased in transgenic potato. Improved phosphorus (P) acquisition when phytate was provided as a sole P source and enhanced microtuber formation in cultured transgenic potato seedlings when phytate was provided as an additional P source were observed, which may account for the increase in leaf chloroplast accumulation (important for photosynthesis) and tuber yield of field-grown transgenic potato supplemented with organic fertilizers. Animal feeding tests indicated that the potato-produced phytase supplement was as effective as a commercially available microbial phytase in increasing the availability of phytate-P to weanling pigs. This study demonstrates that the sporamin promoter can effectively direct high-level recombinant protein expression in potato tubers. Moreover, overexpression of phytase in transgenic potato not only offers an ideal feed additive for improving phytate-P digestibility in monogastric animals but also improves tuber yield, enhances P acquisition from organic fertilizers, and has a potential for phytoremediation.  相似文献   

14.
基于形态性状的甘薯核心种质取样策略研究   总被引:3,自引:0,他引:3  
选取15%的总体取样比例,采用2种分组方法、3种组内取样量比例和2种组内个体选择方法,分析了476份广西甘薯种质资源的18个农艺性状数据,构建出13个甘薯初级核心种质样本。为确定这些样本的代表性,分别与总体进行了5个指标的比较,包括表型保留比例、表型频率方差、遗传多样性指数、变异系数、极差符合率。结果表明,按资源类型分组优于按来源地分组;组内取样量以对数法代表性最好,简单比例法的代表性其次,平方根法最差;在个体选择中,最小距离逐步取样法优于随机法。因此,按资源类型分组,再按对数比例法确定组内取样量,通过最小距离逐步取样法选择个体是甘薯核心种质构建的最佳取样策略。  相似文献   

15.
Culture procedures have been developed to facilitate the induction and maintenance of somatic embryogenic tissues in 14 out of 16 tested cultivars of sweet potato [Ipomoea batatas (L.) Lam]. Both the size of the axillary bud explant and the type of auxin were found to be critical for the successful induction of somatic embryogenesis. Of the five auxins screened 2,4-dichlorophenoxyacetic acid 2,4-D and 2,4,5-trichlorophenoxyacetic acid were the most effective, with use of the latter inducing the production of embryogenic tissues in 7 cultivars which responded poorly or not at all to 2,4-D. Procedures for secondary/cyclic embryogenesis, formation of mature embryos and their conversion to plants are also described. Received: 24 September 1996 / Revision received: 16 December 1996 / Accepted 27 January 1997  相似文献   

16.
17.
  • Nitrogen (N) could affect storage root growth and development of sweet potato. To manage external N concentration fluctuations, plants have developed a wide range of strategies, such as growth changes and gene expression.
  • Five sweet potato cultivars were used to analyse the functions of N in regulating storage root growth. Growth responses and physiological indicators were measured to determine the physiological changes regulated by different N concentrations. Expression profiles of related genes were analysed via microarray hybridization data and qRT‐PCR analysis to reveal the molecular mechanisms of storage root growth regulated by different N concentrations.
  • The growth responses and physiological indicators of the five cultivars were changed by N concentration. The root fresh weight of two of the sweet potato cultivars, SS19 and GS87, was higher under low N concentrations compared with the other cultivars. SS19 and GS87 were found to be having greater tolerance to low N concentration. The expression of N metabolism and storage root growth related genes was regulated by N concentration in sweet potato.
  • These results reveal that N significantly regulated storage root growth. SS19 and GS87 were more tolerant to low N concentration and produced greater storage root yield (at 30 days). Furthermore, several N response genes were involved in both N metabolism and storage root growth.
  相似文献   

18.
Trypsin inhibitor from sweet potato was extracted and purified in a single step using an aqueous two-phase system of polyethylene glycol 6000 (11% w/v), phosphate (16.5% w/v), KCl (9% w/v) and at pH 6. Purity of the trypsin inhibitor was enhanced 3.7-fold, and the recovery was 95%. The purified trypsin inhibitor showed one visible band, and the molecular size was 23 kDa by SDS-PAGE.  相似文献   

19.
Differential expression within a family of novel wound-induced genes in potato   总被引:23,自引:0,他引:23  
Summary Wounding in higher plants leads to an increased synthesis of specific messenger RNAs. A cDNA clone complementary to a wound-induced message from potato tubers was used to isolate a lambda clone from a genomic library of Salanum tuberosum var. Maris Piper. DNA sequence analysis has shown that this single genomic clone contains two novel wound-induced genes, called win1 and win2, organised in close tandem array. The coding sequences of these two genes are highly homologous and are interrupted by a single intron. However, the sequences of the introns and flanking regions have diverged widely. Win1 and win2 encode cysteine-rich proteins of 200 and 211 amino-acids, respectively, which show striking homologies to several chitin-binding proteins. Southern analysis of genomic DNA has shown that win1 and win2 are members of a small multi-gene family which is estimated to have a minimum of five members per haploid genome of Maris Piper and appears to be conserved within the Solanaceae. We have shown by Northern analysis and S1 mapping that the two genes exhibit differential organ-specific expression after the wounding of a potato plant.  相似文献   

20.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号