首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules and allow selective protein degradation by addressing the natural ubiquitin proteasome system. As this new strategy of chemically induced protein degradation can serve as a biological tool and provides new possibilities for drug discovery, it has been applied to a variety of targets including (nuclear) receptors, kinases, and epigenetic proteins. A lot of PROTACs have already been designed in the field of epigenetics, and their synthesis and characterization highly contributed to structural optimization and improved mechanistic understanding of these molecules. In this review, we will discuss and summarize recent advances in PROTAC discovery with focus on epigenetic targets.  相似文献   

2.
Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.  相似文献   

3.
Allostery plays a primary role in regulating protein activity, making it an important mechanism in human disease and drug discovery. Identifying allosteric regulatory sites to explore their biological significance and therapeutic potential is invaluable to drug discovery; however, identification remains a challenge. Allosteric sites are often “cryptic” without clear geometric or chemical features. Since allosteric regulatory sites are often less conserved in protein kinases than the orthosteric ATP binding site, allosteric ligands are commonly more specific than ATP competitive inhibitors. We present a generalizable computational protocol to predict allosteric ligand binding sites based on unbiased ligand binding simulation trajectories. We demonstrate the feasibility of this protocol by revisiting our previously published ligand binding simulations using the first identified viral proto-oncogene, Src kinase, as a model system. The binding paths for kinase inhibitor PP1 uncovered three metastable intermediate states before binding the high-affinity ATP-binding pocket, revealing two previously known allosteric sites and one novel site. Herein, we validate the novel site using a combination of virtual screening and experimental assays to identify a V-type allosteric small-molecule inhibitor that targets this novel site with specificity for Src over closely related kinases. This study provides a proof-of-concept for employing unbiased ligand binding simulations to identify cryptic allosteric binding sites and is widely applicable to other protein–ligand systems.  相似文献   

4.
5.
The cAMP- and cGMP-dependent protein kinases (PKA and PKG) are canonically activated by the corresponding cyclic nucleotides. However, both systems are also sensitive to a wide range of non-canonical allosteric effectors, such as reactive oxygen species, which induce the formation of regulatory inter- and intra-molecular disulfide bridges, and disease-related mutations (DRMs). Here, we present a combined analysis of representative non-canonical allosteric effectors for PKA and PKG, and we identify common molecular mechanisms underlying non-canonical allostery in these kinases, from shifts in dynamical regulatory equilibria to modulation of inter-protomer interactions. In addition, mutations may also drive oligomerization beyond dimerization, and possibly phase transitions, causing loss of kinase inhibitory function and amplifying the allosteric effects of DRMs. Hence non-canonical allosteric stimuli often result in constitutive kinase activation underlying either physiological control of downstream signaling pathways or pathological outcomes, from aortic aneurisms to cancer predisposition. Overall, PKA and PKG emerge as “pan-sensors” going well beyond canonical cyclic nucleotide activation, revealing their versatile roles as central signaling hubs.  相似文献   

6.
A general approach for the rapid and selective inhibition of enzymes in cells using a common tool compound would be of great value for research and therapeutic development. We previously reported a chemogenetic strategy that addresses this challenge for kinases, relying on bioorthogonal tethering of a pan inhibitor to a target kinase through a genetically encoded non-canonical amino acid. However, pan inhibitors are not available for many enzyme classes. Here, we expand the scope of the chemogenetic strategy to cysteine-dependent enzymes by bioorthogonal tethering of electrophilic warheads. For proof of concept, selective inhibition of two E2 ubiquitin-conjugating enzymes, UBE2L3 and UBE2D1, was demonstrated in biochemical assays. Further development and optimization of this approach should enable its use in cells as well as with other cysteine-dependent enzymes, facilitating the investigation of their cellular function and validation as therapeutic targets.  相似文献   

7.
In Birt–Hogg–Dubé (BHD) syndrome, germline loss-of-function mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN inactivation affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15,744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET, and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114, and Ser122, which may be linked to increased oxidative stress levels in FLCNNEG cells. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.  相似文献   

8.
Drug resistance poses a major challenge for targeted cancer therapy. To be able to functionally screen large randomly mutated target gene libraries for drug resistance mutations, we developed a biochemically defined high-throughput assay termed PhosphoFlowSeq. Instead of selecting for proliferation or resistance to apoptosis, PhosphoFlowSeq directly analyzes the enzymatic activities of randomly mutated kinases, thereby reducing the dependency on the signaling network in the host cell. Moreover, simultaneous analysis of expression levels enables compensation for expression-based biases on a single cell level. Using EGFR and its kinase inhibitor erlotinib as a model system, we demonstrate that the clinically most relevant resistance mutation T790M is reproducibly detected at high frequencies after four independent PhosphoFlowSeq selection experiments. Moreover, upon decreasing the selection pressure, also mutations which only confer weak resistance were identified, including T854A and L792H. We expect that PhosphoFlowSeq will be a valuable tool for the prediction and functional screening of drug resistance mutations in kinases.  相似文献   

9.
Cyclic adenosine monophosphate (cAMP) and calcium ions (Ca2+) are two chemical molecules that play a central role in the stimulus-dependent secretion processes within cells. Ca2+ acts as the basal signaling molecule responsible to initiate cell secretion. cAMP primarily acts as an intracellular second messenger in a myriad of cellular processes by activating cAMP-dependent protein kinases through association with such kinases in order to mediate post-translational phosphorylation of those protein targets. Put succinctly, both Ca2+ and cAMP act by associating or activating other proteins to ensure successful secretion. Calcineurin is one such protein regulated by Ca2+; its action depends on the intracellular levels of Ca2+. Being a phosphatase, calcineurin dephosphorylate and other proteins, as is the case with most other phosphatases, such as protein phosphatase 2A (PP2A), PP2C, and protein phosphatase-1 (PP1), will likely be activated by phosphorylation. Via this process, calcineurin is able to affect different intracellular signaling with clinical importance, some of which has been the basis for development of different calcineurin inhibitors. In this review, the cAMP-dependent calcineurin bio-signaling, protein-protein interactions and their physiological implications as well as regulatory signaling within the context of cellular secretion are explored.  相似文献   

10.
Chemical probes are essential tools used to study and modulate biological systems. Here, we describe some of the recent scientific advancement in the field of chemical biology, as well as how the advent of new technologies is redefining the criteria of ‘good’ chemical probes and influencing the discovery of valuable drug leads. In this review, we report selected examples of the usage of linkered and linker-free chemical probes for target identification, biological discovery, and general mechanistic understanding. We also discuss the promises of chemogenomics libraries in phenotypic screens, as well as the limitation of their usage to identify the modulation of new targets and biology.  相似文献   

11.
12.
Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening for kinase-mediated toxicity as early as possible is crucial, as is a better understanding of how off-target kinase inhibition may give rise to chromosomal damage. To that end, we employed a competitive binding assay and an analytical method to predict the toxicity of SMKIs. Specifically, we developed a model based on the binding affinity of SMKIs to a panel of kinases to predict whether a compound tests positive for chromosome damage. As training data, we used the binding affinity of 113 SMKIs against a representative subset of all kinases (290 kinases), yielding a 113×290 data matrix. Additionally, these 113 SMKIs were tested for genotoxicity in an in vitro micronucleus test (MNT). Among a variety of models from our analytical toolbox, we selected using cross-validation a combination of feature selection and pattern recognition techniques: Kolmogorov-Smirnov/T-test hybrid as a univariate filter, followed by Random Forests for feature selection and Support Vector Machines (SVM) for pattern recognition. Feature selection identified 21 kinases predictive of MNT. Using the corresponding binding affinities, the SVM could accurately predict MNT results with 85% accuracy (68% sensitivity, 91% specificity). This indicates that kinase inhibition profiles are predictive of SMKI genotoxicity. While in vitro testing is required for regulatory review, our analysis identified a fast and cost-efficient method for screening out compounds earlier in drug development. Equally important, by identifying a panel of kinases predictive of genotoxicity, we provide medicinal chemists a set of kinases to avoid when designing compounds, thereby providing a basis for rational drug design away from genotoxicity.  相似文献   

13.
Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are very promising targets for hematological malignancies and autoimmune diseases. In recent years, a few compounds have been approved as a marketed medicine, and several are undergoing clinical trials. By recombining the dominant backbone of known active compounds, constructing a foused library, and screening a broad panel of kinases, we found a class of compounds with dual activities of anti-BTK and anti-JAK3. Some of the compounds have shown 10-folds more active in the enzyme and cell-based assays than a known active compound. Furthermore, liver microsome stability experiments show that these compounds have better stability than ibrutinib. These explorations offered new clues to discover benzoxaborole fragment and pyrimidine scaffold as more effective BTK and JAK3 dual inhibitors.  相似文献   

14.
Lipids are indispensable cellular building blocks, and their post-translational attachment to proteins makes them important regulators of many biological processes. Dysfunction of protein lipidation is also implicated in many pathological states, yet its systematic analysis presents significant challenges. Thanks to innovations in chemical proteomics, lipidation can now be readily studied by metabolic tagging using functionalized lipid analogs, enabling global profiling of lipidated substrates using mass spectrometry. This has spearheaded the first deconvolution of their full scope in a range of contexts, from cells to pathogens and multicellular organisms. Protein N-myristoylation, S-acylation, and S-prenylation are the most well-studied lipid post-translational modifications because of their extensive contribution to the regulation of diverse cellular processes. In this review, we focus on recent advances in the study of these post-translational modifications, with an emphasis on how novel mass spectrometry methods have elucidated their roles in fundamental biological processes.  相似文献   

15.
Amyloid proteins are widely studied, both for their unusual biophysical properties and their association with disorders such as Alzheimer’s and Parkinson’s disease. Fluorescence-based methods using site-specifically labeled proteins can provide information on the details of their structural dynamics and their roles in specific biological processes. Here, we describe the application of different labeling methods and novel fluorescent probe strategies to the study of amyloid proteins, both for in vitro biophysical experiments and for in vivo imaging. These labeling tools can be elegantly used to answer important questions on the function and pathology of amyloid proteins.  相似文献   

16.
Clear cell Renal Cell Carcinoma (ccRCC) is among the 10 most common cancers in both men and women and causes more than 140,000 deaths worldwide every year. In order to elucidate the underlying molecular mechanisms orchestrated by phosphorylation modifications, we performed a comprehensive quantitative phosphoproteomics characterization of ccRCC tumor and normal adjacent tissues. Here, we identified 16,253 phosphopeptides, of which more than 9000 were singly quantified. Our in-depth analysis revealed 600 phosphopeptides to be significantly differentially regulated between tumor and normal tissues. Moreover, our data revealed that significantly up-regulated phosphoproteins are associated with protein synthesis and cytoskeletal re-organization which suggests proliferative and migratory behavior of renal tumors. This is supported by a mesenchymal profile of ccRCC phosphorylation events. Our rigorous characterization of the renal phosphoproteome also suggests that both epidermal growth factor receptor and vascular endothelial growth factor receptor are important mediators of phospho signaling in RCC pathogenesis. Furthermore, we determined the kinases p21-activated kinase 2, cyclin-dependent kinase 1 and c-Jun N-terminal kinase 1 to be master kinases that are responsible for phosphorylation of many substrates associated with cell proliferation, inflammation and migration. Moreover, high expression of p21-activated kinase 2 is associated with worse survival outcome of ccRCC patients. These master kinases are targetable by inhibitory drugs such as fostamatinib, minocycline, tamoxifen and bosutinib which can serve as novel therapeutic agents for ccRCC treatment.  相似文献   

17.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   

18.
Changes in the glycosylation process appear early in carcinogenesis and evolve with the growth and spread of cancer. The correlation of the characteristic glycosylation signature with the tumor stage and the appropriate therapy choice is an important issue in translational medicine. Oncologists also pay attention to extracellular vesicles as reservoirs of new cancer glycomarkers that can be potent for cancer diagnosis/prognosis. In this review, we recall glycomarkers used in oncology and show their new glycoforms of improved clinical relevance. We summarize current knowledge on the biological functions of glycoepitopes in cancer-derived extracellular vesicles and their potential use in clinical practice. Is glycomics a future of cancer diagnosis? It may be, but in combination with other omics analyses than alone.  相似文献   

19.
Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.  相似文献   

20.
Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号