首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in situ injectable chitosan/gelatin hydrogel was formed under slightly acidic conditions (pH 4.0 ~ 4.5) using an acid-tolerant tyrosinase, tyrosinase-CNK. A homogeneous chitosan/tyrosinase-CNK solution was prepared in one part of a dual-barrel syringe, and highly soluble gelatin in distilled water was prepared in the other part of the syringe without any additional crosslinking materials. Chitosan/gelatin hydrogel was formed in situ by simple injection of the solutions at room temperature followed by curing at 37°C. However, conventional mushroom tyrosinase did not catalyze this permanent gel formation. Tyrosinase- CNK-catalyzed glycol chitosan/gelatin hydrogel was similarly formed by this in situ injection approach. The hydrogels exhibited a high swelling ratio of 20-fold their own weight, interconnected micropores with an average diameter of approximately 260 μm and in vitro biodegradability suitable for tissue engineering and drug delivery applications. These results showed that tyrosinase-CNK-mediated chitosan/gelatin hydrogel formation has remarkable potential for the development of novel formulations for in situ injectable gel-forming systems.  相似文献   

2.
Regenerative medicine is evolving fast, in particular since the potential of stem cells has been assessed. This evolution process requires the development of new tools capable of meeting the needs of this field of investigation. Cell delivery is a crucial issue for the success of regenerative medicine as cells should be easily seeded, expanded and introduced on site with maintenance of their phenotype and their capability to develop into a neo tissue/organ. On a material standpoint, cell delivery system should meet the preceding needs but also permit an easy introduction at the site and remain without hampering tissue development. As is shown in this review, polysaccharide hydrogels, and in particular in situ forming ones, are materials with a high application potential in regenerative medicine.  相似文献   

3.
Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N′-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA–TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.  相似文献   

4.
《Cytotherapy》2020,22(2):70-81
Background aims. Combining the use of transfection reagents and physical methods can markedly improve the efficiency of gene delivery; however, such methods often cause cell damage. Additionally, naked plasmids without any vector or physical stimulation are difficult to deliver into stem cells. In this study, we demonstrate a simple and rapid method to simultaneously facilitate efficient in situ naked gene delivery and form a bioactive hydrogel scaffold. Methods. Transfecting naked GATA binding protein 4 (GATA4) plasmids into human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) by co-extruding naked plasmids and hUC-MSCs with a biomimetic and negatively charged water-based biodegradable thermo-responsive polyurethane (PU) hydrogel through a microextrusion-based transient-transfection system can upregulate the other cardiac marker genes. Results. The PU hydrogels with optimized physicochemical properties (such as hard-soft segment composition, size, hardness and thermal gelation) induced GATA4-transfected hUC-MSCs to express the cardiac marker proteins and then differentiated into cardiomyocyte-like cells in 15 days. We further demonstrated that GATA4-transfected hUC-MSCs in PU hydrogel were capable of in situ revival of heart function in zebrafish in 30 days. Conclusions. Our results suggest that hUC-MSCs and naked plasmids encapsulated in PU hydrogels might represent a new strategy for in situ tissue therapy using the microextrusion-based transient-transfection system described here. This transfection system is simple, effective and safer than conventional technologies.  相似文献   

5.
While significant progress has been made in directing the behavior of cells encapsulated within three-dimensional (3D) covalently crosslinked hydrogels, the capacity of these materials to support in situ cryopreservation of cells directly within the gels has not been assessed. Here, we demonstrate the retention of human mesenchymal stem cell (hMSC) viability within hyaluronic acid (HA) and polyethylene glycol based hydrogels via a facile gradual cooling and freezing protocol. Encapsulated cell viability was retained at similar rates in both materials systems regardless of initial duration in culture or adhesive ligand incorporation, indicating the versatility of the approach. Additionally, the cryopreservation protocol maintains stem cell differentiation potential; incubation in adipogenic differentiation media induced equal rates of hMSC adipogenesis in freeze-thawed and non-frozen HA based hydrogels on a per-cell basis. Collectively, these findings highlight the cryopreservation protocol as a platform technology that, in addition to contributing to an increased understanding of three-dimensional cell-matrix interactions, could enable the long-term preservation of tissue engineering constructs for clinical applications.  相似文献   

6.
Azide-modified cellulose and alkyne-modified poly(N-isopropylacrylamide-co-hydroxylethyl methacrylate) P(NIPAAm-co-HEMA) were synthesized. The two components were cross-linked once mixed together in the presence of Cu(I) catalyst, a type of Huisgen’s 1,3-dipolar azide–alkyne cycloaddition which is also defined as “click” chemistry, leading to the in situ formation of a series of novel thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels. The gelation process was examined via rheology. The resulted hydrogels was studied via scanning electron microscope (SEM), equilibrium swelling ratio, swelling kinetics and temperature response kinetics. The obtained data presented that the formed hydrogels exhibited favorable thermosensitive properties upon temperature changes.  相似文献   

7.
Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163–165 cps for hydrogel containing microsize drug particles and 171–173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.  相似文献   

8.
The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply.  相似文献   

9.
The 3D encapsulation of cells within hydrogels represents an increasingly important and popular technique for culturing cells and towards the development of constructs for tissue engineering. This environment better mimics what cells observe in vivo, compared to standard tissue culture, due to the tissue-like properties and 3D environment. Synthetic polymeric hydrogels are water-swollen networks that can be designed to be stable or to degrade through hydrolysis or proteolysis as new tissue is deposited by encapsulated cells. A wide variety of polymers have been explored for these applications, such as poly(ethylene glycol) and hyaluronic acid. Most commonly, the polymer is functionalized with reactive groups such as methacrylates or acrylates capable of undergoing crosslinking through various mechanisms. In the past decade, much progress has been made in engineering these microenvironments - e.g., via the physical or pendant covalent incorporation of biochemical cues - to improve viability and direct cellular phenotype, including the differentiation of encapsulated stem cells (Burdick et al.).The following methods for the 3D encapsulation of cells have been optimized in our and other laboratories to maximize cytocompatibility and minimize the number of hydrogel processing steps. In the following protocols (see Figure 1 for an illustration of the procedure), it is assumed that functionalized polymers capable of undergoing crosslinking are already in hand; excellent reviews of polymer chemistry as applied to the field of tissue engineering may be found elsewhere (Burdick et al.) and these methods are compatible with a range of polymer types. Further, the Michael-type addition (see Lutolf et al.) and light-initiated free radical (see Elisseeff et al.) mechanisms focused on here constitute only a small portion of the reported crosslinking techniques. Mixed mode crosslinking, in which a portion of reactive groups is first consumed by addition crosslinking and followed by a radical mechanism, is another commonly used and powerful paradigm for directing the phenotype of encapsulated cells (Khetan et al., Salinas et al.).  相似文献   

10.
How proteins assemble into sarcomeric arrays to form myofibrils is controversial. Immunostaining and transfections of cultures of cardiomyocytes from 10-day avian embryos led us to propose that assembly proceeded in three stages beginning with the formation of premyofibrils followed by nascent myofibrils and culminating in mature myofibrils. However, premyofibril and nascent myofibril arrays have not been detected in early cardiomyocytes examined in situ in the forming avian heart suggesting that the mechanism for myofibrillogenesis differs in cultured and uncultured cells. To address this question of in situ myofibrillogenesis, we applied non-enzymatic procedures and deconvolution imaging techniques to examine early heart forming regions in situ at 2- to 13-somite stages (beating begins at the 9-somite stage), a time span of about 23 h. These approaches enabled us to detect the three myofibril stages in developing hearts supporting a three-step model of myofibrillogenesis in cardiomyocytes, whether they are present in situ, in organ cultures or in tissue culture. We have also discovered that before titin is organized the first muscle myosin filaments are about half the length of the 1.6 μm filaments present in mature A-bands. This supports the proposal that titin may play a role in length determination of myosin filaments.  相似文献   

11.
We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20–24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.  相似文献   

12.
The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.  相似文献   

13.
Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30–36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30–36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.  相似文献   

14.
Presently, the light sources used in photodynamic therapy are high intensity lasers or light emitting diodes, making it unsuitable for large-volume tumors and those located deep inside the body. To overcome this limitation, we propose an in situ light source to excite the photosensitizer to generate toxic singlet oxygen and kill tumor cells directly. In this research, luminol served as the in situ light source in 5-aminolevulinic acid-mediated photodynamic treatment of Caco-2 cell cultures. 72 h after luminol excitation the viability of the treated cells significantly decreased compared to the control cells in assays including cell viability, cytotoxicity, flow cytometry and fluorescence confocal microscopy. According to the results, we suggested luminol could be used as an in situ light source for 5-aminolevulinic acid-mediated photodynamic therapy. This method would have great potential to extend the application of photodynamic therapy to tumors located deep inside the body.  相似文献   

15.
Proteins responsible for the integrity of the genome are often used targets in drug therapies against various diseases. The inhibitors of these proteins are also important to study the pathways in genome integrity maintenance. A prominent example is Ugi, a well known cross-species inhibitor protein of the enzyme uracil-DNA glycosylase, responsible for uracil excision from DNA. Here, we report that a Staphylococcus pathogenicity island repressor protein called StlSaPIbov1 (Stl) exhibits potent dUTPase inhibition in Mycobacteria. To our knowledge, this is the first indication of a cross-species inhibitor protein for any dUTPase. We demonstrate that the Staphylococcus aureus Stl and the Mycobacterium tuberculosis dUTPase form a stable complex and that in this complex, the enzymatic activity of dUTPase is strongly inhibited. We also found that the expression of the Stl protein in Mycobacterium smegmatis led to highly increased cellular dUTP levels in the mycobacterial cell, this effect being in agreement with its dUTPase inhibitory role. In addition, Stl expression in M. smegmatis drastically decreased colony forming ability, as well, indicating significant perturbation of the phenotype. Therefore, we propose that Stl can be considered to be a cross-species dUTPase inhibitor and may be used as an important reagent in dUTPase inhibition experiments either in vitro/in situ or in vivo.  相似文献   

16.
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.  相似文献   

17.
Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.  相似文献   

18.
For this study, six seam sequences of Duckmantian age from the Ruhr Basin, western Germany, were analysed. 155 samples from drill cores were examined, including coal samples, as well as organic-rich and clastic sedimentary rocks. All samples were analysed using palynological and coal petrographical techniques. Based on published information of in situ miospores the encountered dispersed miospores were assigned to their parent plants in order to reconstruct the vegetation history. Six vegetational associations were identified using Detrended Correspondence Analyses (DCA): lepidocarpacean association I, lepidocarpacean association II, lepidocarpacean-sigillarian association, lepidocarpacean-sphenophyll association, lepidocarpacean-fern association, and the subarborescent lycopsid association.Lycospora is the most important constituent in the miospore association as in 75% of all samples the genus is represented with more than 50% relative abundance. Lepidocarpaceans such as Lepidophloios and Lepidodendron are very common among the plant fossils. Hence, arborescent lycopsids dominated the vegetation of the Ruhr Basin during the mid and late Duckmantian, forming flood plains and planar forest mires. Variations in the plant environment are reflected by greater influence of sigillarians, which were typical for swamp margins or for domed swamps, characterized by stunted vegetation. Fern-dominated environments were rare during the Duckmantian.A typical rhythmic succession shows an evolution from clastic flood plains through peat substrate planar mires, followed by a doming of the swamps and formation of ombrogenous mires. Floodplains reappeared during periods of subsidence, accompanied by a rise in water level.  相似文献   

19.
The purpose of this study was to develop an injectable in situ liquid crystal formulation for intra-articular (IA) administration, and in situ forming a viscous liquid crystalline gel with long-term release of sinomenine hydrochloride (SMH) upon water absorption. The pseudo-ternary phase diagram of phytantriol (PT)-ethanol (ET)-water was constructed, and isotropic solutions were chosen for further optimization. The physicochemical properties of isotropic solutions were evaluated, and the phase structures of liquid crystalline gels formed by isotropic solutions in excess water were confirmed by crossed polarized light microscopy (CPLM) and small-angle X-ray scattering (SAXS). In vitro drug release studies were conducted by using a dialysis membrane diffusion method. The optimal in situ cubic liquid crystal (ISV2) (PT/ET/water, 64:16:20, w/w/w) loaded with 6 mg/g of SMH showed a suitable pH, showed to be injectable, and formed a cubic liquid crystalline gel in situ with minimum water absorption within the shortest time. The optimal ISV2 was able to sustain the drug release for 6 days. An in situ hexagonal liquid crystal (ISH2) system was prepared by addition of 5% vitamin E acetate (VitEA) into PT in the optimal ISV2 system to improve the sustained release of SMH. This ISH2 (PT/VitEA/ET/water, 60.8:3.2:16:20, w/w/w/w) was an injectable isotropic solution with a suitable pH range. The developed ISH2 was found to be able to sustain the drug release for more than 10 days and was suitable for IA injection for the treatment of rheumatoid arthritis (RA).KEY WORDS: in situ cubic liquid crystal, in situ hexagonal liquid crystal, phytantriol, sinomenine hydrochloride, sustained drug release  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号