首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim The oceans harbour a great diversity of organisms whose distribution and ecological preferences are often poorly understood. Species distribution modelling (SDM) could improve our knowledge and inform marine ecosystem management and conservation. Although marine environmental data are available from various sources, there are currently no user‐friendly, high‐resolution global datasets designed for SDM applications. This study aims to fill this gap by assembling a comprehensive, uniform, high‐resolution and readily usable package of global environmental rasters. Location Global, marine. Methods We compiled global coverage data, e.g. satellite‐based and in situ measured data, representing various aspects of the marine environment relevant for species distributions. Rasters were assembled at a resolution of 5 arcmin (c. 9.2 km) and a uniform landmask was applied. The utility of the dataset was evaluated by maximum entropy SDM of the invasive seaweed Codium fragile ssp. fragile. Results We present Bio‐ORACLE (ocean rasters for analysis of climate and environment), a global dataset consisting of 23 geophysical, biotic and climate rasters. This user‐friendly data package for marine species distribution modelling is available for download at http://www.bio‐oracle.ugent.be . The high predictive power of the distribution model of C. fragile ssp. fragile clearly illustrates the potential of the data package for SDM of shallow‐water marine organisms. Main conclusions The availability of this global environmental data package has the potential to stimulate marine SDM. The high predictive success of the presence‐only model of a notorious invasive seaweed shows that the information contained in Bio‐ORACLE can be informative about marine distributions and permits building highly accurate species distribution models.  相似文献   

2.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

3.
Field monitoring can vary from simple volunteer opportunistic observations to professional standardised monitoring surveys, leading to a trade-off between data quality and data collection costs. Such variability in data quality may result in biased predictions obtained from species distribution models (SDMs). We aimed to identify the limitations of different monitoring data sources for developing species distribution maps and to evaluate their potential for spatial data integration in a conservation context. Using Maxent, SDMs were generated from three different bird data sources in Catalonia, which differ in the degree of standardisation and available sample size. In addition, an alternative approach for modelling species distributions was applied, which combined the three data sources at a large spatial scale, but then downscaling to the required resolution. Finally, SDM predictions were used to identify species richness and high quality areas (hotspots) from different treatments. Models were evaluated by using high quality Atlas information. We show that both sample size and survey methodology used to collect the data are important in delivering robust information on species distributions. Models based on standardized monitoring provided higher accuracy with a lower sample size, especially when modelling common species. Accuracy of models from opportunistic observations substantially increased when modelling uncommon species, giving similar accuracy to a more standardized survey. Although downscaling data through a SDM approach appears to be a useful tool in cases of data shortage or low data quality and heterogeneity, it will tend to overestimate species distributions. In order to identify distributions of species, data with different quality may be appropriate. However, to identify biodiversity hotspots high quality information is needed.  相似文献   

4.

Aim

To identify useful sources of species data and appropriate habitat variables for species distribution modelling on rare species, with seahorses as an example, deriving ecological knowledge and spatially explicit maps to advance global seahorse conservation.

Location

The shallow seas.

Methods

We applied a typical species distribution model (SDM), maximum entropy, to examine the utility of (1) two versions of habitat variables (habitat occurrences vs. proximity to habitats) and (2) three sources of species data: quality research‐grade (RG) data, quality‐unknown citizen science (CS) and museum‐collection (MC) data. We used the best combinations of species data and habitat variables to predict distributions and estimate species–habitat relations and threatened status for seahorse species.

Results

We demonstrated that using “proximity to habitats” and integrating all species datasets (RG, CS and MC) derived models with the highest accuracies among all dataset variations. Based on this finding, we derived reliable models for 33 species. Our models suggested that only 0.4% of potential seahorse range was suitable to more than three species together; seahorse biogeographic epicentres were mainly in the Philippines; and proximity to sponges was an important habitat variable. We found that 12 “Data Deficient” species might be threatened based on our predictions according to IUCN criteria.

Main conclusions

We highlight that using proper habitat variables (e.g., proximity to habitats) is critical to determine distributions and key habitats for low‐mobility animals; collating and integrating quality‐unknown occurrences (e.g., CS and MC) with quality research data are meaningful for building SDMs for rare species. We encourage the application of SDMs to estimate area of occupancy for rare organisms to facilitate their conservation status assessment.
  相似文献   

5.
Predictive modelling techniques using presence-only data have attracted increasing attention because they can provide information on species distributions and their potential habitat for conservation and ecosystem management. However, the existing predictive modelling techniques have several limitations. Here, we propose a novel predictive modelling technique, Limiting Variable and Environmental Suitability (LIVES), for predicting the distributions and potential habitats of species using presence-only data. It is based on limiting factor theory, which postulates that the occurrence of a species is only determined by the factor that most limits its distribution. LIVES predicts the suitability of a candidate grid cell for a species in terms of limiting environmental factor. It also predicts the most limiting factor or the potential limiting factor at the grid cell. The environmental factors can be climatic, geological, biological and any other relevant environmental factors, whether quantitative or qualitative. The predicted habitats consist of the current distribution of the species and the potentially suitable areas for the species where there is currently no record of occurrence. We also compare several properties of LIVES and other predictive modelling techniques. On the basis of 1,000 simulations, the average predictions of LIVES are more accurate than the two other commonly used modelling techniques (BIOCLIM and DOMAIN) for presence-only data.  相似文献   

6.
The application of distributional modelling techniques to invertebrates has seldom been explored, primarily due to a lack in adequate distributional data for these taxa. Here, we have selected a simple modelling approach for the generation of distribution maps from a limited dataset, as a first step to the atlassing of Odonata in South Africa. The BIOCLIM-type approach was selected for this purpose, as it requires minimal data for model building and validation procedures. BIOCLIM partitions an area climatically prior to survey, and predicts species distributions on a bioclimatic basis. Conservative deterministic models were developed using point presence/absence data for each of the regions' 160 described species. These models were validated by cross-validation, and the Jaccard coefficient of similarity was used as an index of model performance. A sensitivity analysis investigated the influence of extreme values and errors in the data on predictive ability. Models identified disjunct distribution patterns and accurately predicted the restricted ranges of habitat-specialist species. However, models overstated the distribution of habitat generalists and species with distinct outlier records. For accurate predictions of broad-ranging species, it is suggested that a probabilistic approach be adopted. Nevertheless, basic distribution patterns generated through this conservative approach can be further applied to the investigation of species richness and issues relating to conservation, such as reserve design. The BIOCLIM-type approach provided a means of predicting species distributions, allowing for broad-scale atlassing and thereby providing the first step towards Odonata conservation in South Africa.  相似文献   

7.
Accurate modeling of geographic distributions of species is crucial to various applications in ecology and conservation. The best performing techniques often require some parameter tuning, which may be prohibitively time‐consuming to do separately for each species, or unreliable for small or biased datasets. Additionally, even with the abundance of good quality data, users interested in the application of species models need not have the statistical knowledge required for detailed tuning. In such cases, it is desirable to use “default settings”, tuned and validated on diverse datasets. Maxent is a recently introduced modeling technique, achieving high predictive accuracy and enjoying several additional attractive properties. The performance of Maxent is influenced by a moderate number of parameters. The first contribution of this paper is the empirical tuning of these parameters. Since many datasets lack information about species absence, we present a tuning method that uses presence‐only data. We evaluate our method on independently collected high‐quality presence‐absence data. In addition to tuning, we introduce several concepts that improve the predictive accuracy and running time of Maxent. We introduce “hinge features” that model more complex relationships in the training data; we describe a new logistic output format that gives an estimate of probability of presence; finally we explore “background sampling” strategies that cope with sample selection bias and decrease model‐building time. Our evaluation, based on a diverse dataset of 226 species from 6 regions, shows: 1) default settings tuned on presence‐only data achieve performance which is almost as good as if they had been tuned on the evaluation data itself; 2) hinge features substantially improve model performance; 3) logistic output improves model calibration, so that large differences in output values correspond better to large differences in suitability; 4) “target‐group” background sampling can give much better predictive performance than random background sampling; 5) random background sampling results in a dramatic decrease in running time, with no decrease in model performance.  相似文献   

8.
Aim  To test how well species distributions and abundance can be predicted following invasion and climate change when using only species distribution and abundance data to estimate parameters.
Location  Models were developed for the species' native range in the Americas and applied to Australia.
Methods  We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best-fit model was run under two climate change scenarios.
Results  Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change.
Conclusions  Novel climates prevented the development of a predictive model which relied only on native-range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post-invasion data.  相似文献   

9.
A topic of particular current interest is community‐level approaches to species distribution modelling (SDM), i.e. approaches that simultaneously analyse distributional data for multiple species. Previous studies have looked at the advantages of community‐level approaches for parameter estimation, but not for model selection – the process of choosing which model (and in particular, which subset of environmental variables) to fit to data. We compared the predictive performance of models using the same modelling method (generalised linear models) but choosing the subset of variables to include in the model either simultaneously across all species (community‐level model selection) or separately for each species (species‐specific model selection). Our results across two large presence/absence tree community datasets were inconclusive as to whether there was an overall difference in predictive performance between models fitted via species‐specific vs community‐level model selection. However, we found some evidence that a community approach was best suited to modelling rare species, and its performance decayed with increasing prevalence. That is, when data were sparse there was more opportunity for gains from “borrowing strength” across species via a community‐level approach. Interestingly, we also found that the community‐level approach tended to work better when the model selection problem was more difficult, and more reliably detected “noise” variables that should be excluded from the model.  相似文献   

10.
Predictive modelling of species’ distributions has been successfully applied in conservation ecology, but effective conservation requires predictive and accurate models. The combination of different scales to build habitat models might improve their predictive ability and hence their usefulness for conservation, but this approach has rarely been evaluated. We developed habitat-occupancy models combining scales from nest-site to landscape for a key population at the northwestern edge of the distribution of the globally endangered Egyptian vulture (Neophron percnopterus). We used generalised linear models (GLM) and an information-theoretic approach to identify the best combination of scales and resolutions for explaining occurrence. Those models that combined nest-site and landscape scales improved the predictive ability compared with the scale-specific ones. The best combined model had a very high predictive ability when used against an independent dataset (92% correct classifications). Egyptian vultures preferred to nest in caves with vegetation at the entrance that were situated at the base of long cliffs, provided that these cliffs are embedded within low-lying, heterogeneous areas with little topographic irregularity and with little human disturbance. The density of sheep around the nest positively influenced Egyptian vulture presence. Conservation of the studied population should focus on minimising human disturbance and on promoting sustainable development through conservation of traditional pastoralism. Our findings highlight the importance of developing region-specific multiscale models in order to design effective conservation strategies. The approach described here may be applied similarly in other populations and species.  相似文献   

11.
Across a large mountain area of the western Swiss Alps, we used occurrence data (presence‐only points) of bird species to find suitable modelling solutions and build reliable distribution maps to deal with biodiversity and conservation necessities of bird species at finer scales. We have performed a multi‐scale method of modelling, which uses distance, climatic, and focal variables at different scales (neighboring window sizes), to estimate the efficient scale of each environmental predictor and enhance our knowledge on how birds interact with their complex environment. To identify the best radius for each focal variable and the most efficient impact scale of each predictor, we have fitted univariate models per species. In the last step, the final set of variables were subsequently employed to build ensemble of small models (ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as tools of conservation. We could build useful habitat suitability models for the three groups of species in the national red list. Our results indicate that, in general, the most important variables were in the group of bioclimatic variables including “Bio11” (Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential foraging, feeding and nesting sites. Our distribution maps are useful for identifying the most threatened species and their habitat and also for improving conservation effort to locate bird hotspots. It is a powerful strategy to improve the ecological understanding of the distribution of bird species in a dynamic heterogeneous environment.  相似文献   

12.
Can the cause of aggregation be inferred from species distributions?   总被引:2,自引:0,他引:2  
Species distributions often show an aggregated pattern, which can be due to a number of endo- and exogenous factors. While autologistic models have been used for modelling such data with statistical rigour, little emphasis has been put on disentangling potential causes of aggregation. In this paper we ask whether it is possible to infer sources of aggregation in species distributions from a single set of occurrence data by comparing the performance of various autologistic models. We create simulated data sets, which show similar occupancy patterns, but differ in the process that causes the aggregation. We model the distribution of these data with various autologistic models, and show how the relative performance of the models is sensitive to the factor causing aggregation in the data. This information can be used when modelling real species data, where causes of aggregation are typically unknown. To illustrate, we use our approach to assess the potential causes of aggregation in data of seven bird species with contrasting statistical patterns. Our findings have important implications for conservation, as understanding the mechanisms that drive population fluctuations in space and time is critical for the development of effective management actions for long-term conservation.  相似文献   

13.
明确野生动植物的地理分布是基础生态学和应用生态学领域的一个基础但关键的步骤,为后续分析提供了重要的信息。而野生动植物分布调查是一项需要投入大量人力,精力和资金的工作,特别是稀有物种的调查。物种分布模型越来越受到广泛引用尤其是在生物保护方面。为了证明物种分布模型在野生生物调查中精确采样方法的可行性,以全球易危物种黑颈鹤和白头鹤的实际繁殖分布预测为例,使用随机森林(Random Forest)算法加以验证。比较发现物种分布模型预测实际调查分布点,随机样方法生成的随机点,系统样方法的规则点在空间相对出现概率具有显著差异(P0.001),实际分布点具有较高的相对出现概率。该结果表明若在物种分布相对出现概率较高区域设置样方能够减少实际调查区域,有效提高发现目标物种的概率,从而减少调查投入。基于物种分布模型的精确采样方法将有效地提高我们对稀有物种分布的了解,有利于野生动植物的保护规划。  相似文献   

14.
Predictive species distribution models are standard tools in ecological research and are used to address a variety of applied and conservation related issues. When making temporal or spatial predictions, uncertainty is inevitable and prediction errors may depend not only on data quality and the modelling algorithm used, but on species characteristics. Here, we applied a standard distribution modelling technique (generalized linear models) using European plant species distribution data and climatic parameters. Predictive performance was calculated using AUC, (Cohen’s) Kappa and true skill statistic (TSS), that were subsequently correlated with biological and life-history traits. After accounting for phylogenetic dependence among species, model performance was poorest for species having a short life span and occurring in human disturbed habitats. Our results clearly indicate that the performance of distribution models can be dependent on functional traits and provide further evidence that a species’ ecology is likely to affect the ability of models to predict its distribution. Biased and less reliable predictions could misguide policy decisions and the management and conservation of our natural heritage.  相似文献   

15.
To successfully protect native biodiversity from the effects of biological invasions, local conservation priorities must be established. For this purpose, fine-grained species distribution data is required but often unavailable. We present a new approach to obtain fine-grained predictions of invasion through the development of downscaled invasion maps based on coarse-grained distribution data. The framework is illustrated for the alien invader Acacia dealbata in the Northwest of Portugal. The analytical design was divided in five steps: (1) three individual coarse-grained models were calibrated and their spatial predictions were downscaled into fine-grained models using three different downscaling techniques; (2) a Downscaling Consensus Map was built by spatially combining the predictions from those three models; (3) using coarse-grained (1 km2) or fine-grained (0.04 km2) datasets, two different models were fitted and spatially projected; (4) for each spatial resolution, Conservation Value maps were produced, based on the spatial combination of the protection networks represented in the region; and (5) the spatial conflicts between the predicted distribution of the invader and Conservation Value maps were calculated and compared for the several invasion maps. The downscaled models showed high predictive performance (AUC > 0.9). The spatial projections of the different models revealed a general similarity among projections from all modelling techniques, for both the patterns of invasion and the conflicts with conservation areas. The possibility of obtaining detailed and reliable predictions based on coarse-grained distribution data could avoid costly fieldwork to collect fine-grained distribution data while effectively supporting the management of invasions at the appropriate scales.  相似文献   

16.
While modelling habitat suitability and species distribution, ecologists must deal with issues related to the spatial resolution of species occurrence and environmental data. Indeed, given that the spatial resolution of species and environmental datasets range from centimeters to hundreds of kilometers, it underlines the importance of choosing the optimal combination of resolutions to achieve the highest possible modelling prediction accuracy. We evaluated how the spatial resolution of land cover/waterbody datasets (meters to 1 km) affect waterbird habitat suitability models based on atlas data (grid cell of 12 × 11 km). We hypothesized that the area, perimeter and number of waterbodies computed from high resolution datasets would explain distributions of waterbirds better because coarse resolution datasets omit small waterbodies affecting species occurrence. Specifically, we investigated which spatial resolution of waterbodies better explain the distribution of seven waterbirds nesting on ponds/lakes with areas ranging from 0.1 ha to hundreds of hectares. Our results show that the area and perimeter of waterbodies derived from high resolution datasets (raster data with 30 m resolution, vector data corresponding with map scale 1:10 000) explain the distribution of the waterbirds better than those calculated using less accurate datasets despite the coarse grain of the species data. Taking into account the spatial extent (global vs regional) of the datasets, we found the Global Inland Waterbody Dataset to be the most suitable for modelling distribution of waterbirds. In general, we recommend using land cover data of a resolution sufficient to capture the smallest patches of the habitat suitable for a given species’ presence for both fine and coarse grain habitat suitability and distribution modelling.  相似文献   

17.
Mapping of species distributions at large spatial scales has been often based on the representation of gathered observations in a general grid atlas framework. More recently, subsampling and subsequent interpolation or habitat spatial modelling techniques have been incorporated in these projects to allow more detailed species mapping. Here, we explore the usefulness of data from long-term monitoring (LTM) projects, primarily aimed at estimating trends in species abundance and collected at shorter time intervals (usually yearly) than atlas data, to develop predictive habitat models. We modelled habitat occupancy for 99 species using a bird LTM program and evaluated the predictive accuracy of these models using independent data from a contemporary and comprehensive breeding bird atlas project from the same region. Habitat models from LTM data using generalized linear modelling were significant for all the species and generally showed a high predictive power, albeit lower than that from atlas models. Sample size and species range size and niche breadth were the most important factors behind variability in model predictive accuracy, whereas the spatial distribution of sampling units at a given sample size had minor effects. Although predictive accuracy of habitat modelling was strongly species dependent, increases in sample size and, secondarily, a better spatial distribution of sampling units should lead to more powerful predictive distribution models. We suggest that data from LTM programs, now established in a large number of countries, has the potential for being a major source of good quality data suitable for the estimation and regularly update of distributions at large spatial scales for a number of species.  相似文献   

18.
Species distribution models are required for the research and management of biodiversity in the hyperdiverse tropical forests, but reliable and ecologically relevant digital environmental data layers are not always available. We here assess the usefulness of multispectral canopy reflectance (Landsat) relative to climate data in modelling understory plant species distributions in tropical rainforests. We used a large dataset of quantitative fern and lycophyte species inventories across lowland Amazonia as the basis for species distribution modelling (SDM). As predictors, we used CHELSA climatic variables and canopy reflectance values from a recent basin-wide composite of Landsat TM/ETM+ images both separately and in combination. We also investigated how species accumulate over sites when environmental distances were expressed in terms of climatic or surface reflectance variables. When species accumulation curves were constructed such that differences in Landsat reflectance among the selected plots were maximised, species accumulated faster than when climatic differences were maximised or plots were selected in a random order. Sixty-nine species were sufficiently frequent for species distribution modelling. For most of them, adequate SDMs were obtained whether the models were based on CHELSA data only, Landsat data only or both combined. Model performance was not influenced by species’ prevalence or abundance. Adding Landsat-based environmental data layers overall improved the discriminatory capacity of SDMs compared to climate-only models, especially for soil specialist species. Our results show that canopy surface reflectance obtained by multispectral sensors can provide studies of tropical ecology, as exemplified by SDMs, much higher thematic (taxonomic) detail than is generally assumed. Furthermore, multispectral datasets complement the traditionally used climatic layers in analyses requiring information on environmental site conditions. We demonstrate the utility of freely available, global remote sensing data for biogeographical studies that can aid conservation planning and biodiversity management.  相似文献   

19.
The predictive skill of species distribution models depends on the quality and quantity of input information. In addition to the physical environmental variables, prey availability is also one of the main drivers regulating spatial distribution of marine species. However, prey distribution data have rarely been considered in habitat models due to the lack of information on non-commercial prey species. This may lead to an incomplete view of species distributions and biased model predictions. In this study, we developed a new framework of two-phase generalized additive models (GAMs) based on the Tweedie distribution to incorporate the predicted prey abundance as covariates in habitat models, and applied this framework to juvenile slender lizardfish Saurida elongata in Haizhou Bay, China. This study demonstrated that the predictive skill of habitat models could be greatly improved through incorporating prey abundance as explanatory variables. The importance of prey distribution data in the habitat model confirms the essentiality of including prey data while modelling species distribution. Spatial overlap and GAM analysis demonstrated that not all dominant prey can be selected as potential explanatory variables and only those prey species showing high spatiotemporal occurrences with predators should be incorporated. The framework derived in this study could be extended to other marine organisms to improve the predictive skill of habitat models and enhance our understanding of the ecological mechanisms underlying the distribution of marine species.  相似文献   

20.
Current circumstances — that the majority of species distribution records exist as presence‐only data (e.g. from museums and herbaria), and that there is an established need for predictions of species distributions — mean that scientists and conservation managers seek to develop robust methods for using these data. Such methods must, in particular, accommodate the difficulties caused by lack of reliable information about sites where species are absent. Here we test two approaches for overcoming these difficulties, analysing a range of data sets using the technique of multivariate adaptive regression splines (MARS). MARS is closely related to regression techniques such as generalized additive models (GAMs) that are commonly and successfully used in modelling species distributions, but has particular advantages in its analytical speed and the ease of transfer of analysis results to other computational environments such as a Geographic Information System. MARS also has the advantage that it can model multiple responses, meaning that it can combine information from a set of species to determine the dominant environmental drivers of variation in species composition. We use data from 226 species from six regions of the world, and demonstrate the use of MARS for distribution modelling using presence‐only data. We test whether (1) the type of data used to represent absence or background and (2) the signal from multiple species affect predictive performance, by evaluating predictions at completely independent sites where genuine presence–absence data were recorded. Models developed with absences inferred from the total set of presence‐only sites for a biological group, and using simultaneous analysis of multiple species to inform the choice of predictor variables, performed better than models in which species were analysed singly, or in which pseudo‐absences were drawn randomly from the study area. The methods are fast, relatively simple to understand, and useful for situations where data are limited. A tutorial is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号