首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil erosion by water is considered as one of the most significant forms of land degradation that affects sustained productivity of agricultural land use and water quality. It is influenced by a considerable number of factors (including climate, soil, topography, land use and types of land management), so that the information on the spatial distribution of soil erosion rate and its related effects can be effectively employed as a baseline data for land use development and water protection. The principal aim of this study is three-fold: (i) to map existing land use; (ii) to assess and map the spatial distribution of average annual rate of soil losses in the study area; (iii) to evaluate spatial matching between existing and proposed land use including a distance analysis from the water body (the Bili-Bili Dam). An analytical procedures used, respectively, include supervised classification of satellite imagery, application of RUSLE (Revised USLE), and overlay analysis in a raster GIS environment, utilising available information in the region covering some parts of Jeneberang catchment, South Sulawesi, Indonesia. The results suggest that the outputs of this study can be used for the identification of land units on a cell-basis with different land use types, rate of soil loss, inconsistency between proposed and planned land use, as well as the threat of land degradation to the main river and the dam. The analytical procedures developed in this research may be useful in other areas, particularly in the studies related to the assessment and mapping of land use and erosion for the importance of sustainable land use at a relatively large area.  相似文献   

2.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   

3.
One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.  相似文献   

4.
土壤保持服务:概念、评估与展望   总被引:8,自引:0,他引:8  
刘月  赵文武  贾立志 《生态学报》2019,39(2):432-440
土壤保持服务作为一项重要的生态系统调节服务,是防止区域土地退化、降低洪涝灾害风险的重要保障。针对在全球范围内影响最大的土壤水蚀,基于土壤侵蚀、运移和输出过程,对土壤保持服务的概念、评估方法进行了梳理总结。土壤保持服务是指生态系统防止土壤流失的侵蚀调控能力及对泥沙的储积保持能力。土壤保持服务的评估往往是基于通用土壤流失方程RUSLE(Revised Universal Soil Loss Equation),以潜在土壤侵蚀量(裸地时土壤侵蚀量)与实际土壤侵蚀量之差,作为指标衡量。由于生态过程具有尺度依赖性,对土壤保持服务的有效评估,需要采用多尺度方法。土壤保持服务与人类需求紧密相关,在未来土壤保持服务研究中应强调连接土壤保持服务与人类福祉,对土壤保持服务产生、流动、使用的全过程及土壤保持服务时空动态与人类福祉变化的关系进行探究。  相似文献   

5.
新疆库尔勒市土地利用变化对土壤性状的影响研究   总被引:32,自引:0,他引:32  
陈浮  濮励杰  彭补拙  包浩生 《生态学报》2001,21(8):1290-1295
土地利用与土地覆被变化是全球变化研究的热点问题。在新疆库尔勒市选择土地利用变化后已持续利用15-20a的9种典型利用方式,11个剖面,与荒漠、原始胡杨林2各参照利用方式3个标准剖面进行对比分析。结果显示土地利用变化对土壤养分、土壤盐分、土壤侵蚀、土壤水分和土地生产力有明显的影响,荒漠开垦后土壤养分呈下降趋势,土壤侵蚀强度也呈下降趋势,土地生产力与土壤有水分含量呈上升趋势。同时发现土壤侵蚀强度与生产力呈负相关关系,土地生产力与土壤水分呈正相关关系。林、草有利于保护干旱区生态环境,调整土地利用结构,合理开垦,加之预防和治理措施在一定程度上可防止或减弱土地退化(荒漠化)进程。  相似文献   

6.
Several European countries have expanded the traditional use of anaerobic digestion, i.e. waste treatment, to energy generation through attractive incentives. In some countries, it is further promoted by additional payments to generate biogas from biomass. This review aims to summarise agronomic aspects of methane production from maize, to address resulting abiotic environmental effects and to highlight challenges and prospects. The opportunities of biogas production are manifold, including the mitigation of climate change, decreasing reliance on fossil fuels and diversification of farm income. Although the anaerobic digestion of animal manure is regarded as the most beneficial for reducing greenhouse gas (GHG) emission from manure storage, the energy output can be substantially enhanced by co-digesting manure and maize, which is the most efficient crop for substrate provision in many regions. Although first regarded as beneficial, the rush into biogas production strongly based on maize (Zea mays ssp. mays) is being questioned in view of its environmental soundness. Main areas of concern comprise the spatial concentration of biogas plant together with the high amount of digestate and resulting pollution of surface and ground water, emission of climate-relevant gases and detrimental effects of maize cultivation on soil organic matter degradation. Key challenges that have been identified to enhance the sustainability of maize-based biogas production include (1) the design of regionally adapted maize rotations, (2) an improved management of biogas residues (BR), (3) the establishment of a more comprehensive data base for evaluating soil C fluxes in maize production as well as GHG emissions at the biogas plant and during BR storage and (4) the consideration of direct and indirect land use change impact of maize-based biogas production.  相似文献   

7.
利用遥感技术对吉林省水蚀情况进行调查,并运用线性模型理论,研究了水蚀灾害的影响因素,分析了下垫面诸因素对水蚀模数的影响程度,找出影响水蚀模数的主导因素。结果表明:影响吉林省水蚀模数的下垫面各因素中,成土母质、土地利用类型、植被覆盖度3个因子与水蚀模数的关系在0.05水平上达到显著程度。不同成土母质水蚀模数的大小次序为:石质<土石质<土质<黄土。吉林省土地利用类型中裸地的平均水蚀模数为6500t/(km2·a),针叶林、阔叶林、针阔混交林、灌木林、草地、农田的平均水蚀模数依次是250、1440、2366、3446、1188、2917t/(km2·a),分别比裸地减少96.2%、77.8%、63.6%、47.0%、81.7%、55.1%。随着植被覆盖度的增大,水蚀模数显著减少。农田覆盖度与植被覆盖度30%~50%的水土保持功效相当。各因素正规方程解可预测不同立地条件下的水蚀模数,相关系数达到0.975(自由度为53)。该研究为吉林省预防及治理水蚀灾害提供了理论依据。  相似文献   

8.
Soil erosion and contamination are two main desertification indices or land degradation agents in agricultural areas. Global climate change consequence is a priority to predict global environmental change impacts on these degradation risks. This agro-ecological approach can be especially useful when formulating soil specific agricultural practices based on the spatial variability of soils and related resources to reverse environmental degradation. Raizal and Pantanal models within the new MicroLEIS framework, the Ero&Con package, are database/expert system evaluation approach for assessing limitations to land use, or vulnerability of the land to specified agricultural degradation risks. This study was performed in Souma area with approximately 4100 ha extension in the North-West of Iran (west Azarbaijan). Based on 35 sampling soils, Typic Xerofluvents, Typic Calcixerepts, Fluventic Haploxerepts and Fluventic Endaquepts were classified as main subgroups. Climatological data, referred to temperature and precipitation of more than 36 consecutive years were collected from Urmieh station reports and stored in monthly Climate Database CDBm, as a major component of MicroLEIS DSS (CDBm) program. Climate data for a hypothetical future scenario were collected from the Intergovernmental Panel on Climate Change (IPCC) reports for the 2080s period. The evaluation approach predicts that attainable water erosion vulnerability classes were none (V1) very low (V2) and moderately low (V4) in the total of 72%, 13% and 15% of the Souma area, respectively and they will not affected by climate change. On contrary, attainable wind erosion vulnerability classes will increase. Also, phosphorous and heavy metal contamination vulnerability risks will not differ in two compared scenarios while nitrogen and pesticides vulnerability classes will be improved.  相似文献   

9.
汉江流域景观格局变化对土壤侵蚀的影响   总被引:1,自引:0,他引:1  
高艳丽  李红波 《生态学报》2021,41(6):2248-2260
在流域尺度上,景观格局变化是决定土壤侵蚀程度的重要因素。以汉江流域为研究区域,基于2000—2015年四期土地利用类型数据及环境气象数据,运用中国土壤流失方程和逐步回归法,探究景观格局变化对土壤侵蚀的影响。结果表明:(1)在2000—2015年间,汉江流域土壤侵蚀量下降,高值区分布在流域中部草地区,低值区分布在流域东西两侧的林地和耕地区。不同坡度下各等级土壤侵蚀量不同,侵蚀量最大值出现在10—30°的坡度范围内。(2)研究期间,汉江流域的景观破碎化程度加强,斑块形状趋于简单,各斑块自身连通性增强,景观类型空间分布均匀。(3)汉江流域土壤侵蚀量与斑块密度和平均邻接度指数呈正相关,与蔓延度指数和香农均匀度指数呈负相关,即景观破碎度越高、连通性越差,土壤越容易遭受侵蚀,反之则不易受到侵蚀;研究表明景观格局变化对土壤侵蚀有显著影响,结果可为流域尺度景观管理与水土保持研究提供参考。  相似文献   

10.
Within the countries of the former socialist bloc, the changes in the politico-economic system at the end of the 1990s created a situation where it was (and still is) necessary to restore agricultural land resource property rights, to adjust the structure of agricultural land to current needs and to improve the current state of environmental resources. This case study covers 19 cadastral areas in the western part of the Czech Republic that were affected by the land consolidation process during 2000–2006. The main task of this study was to document how land consolidation processes could affect the change of land use and landscape structure and whether the land consolidation planners take into account the protection of natural resources. The increased acreage of grasslands was the most important change which has occurred in the land use in the 19 analysed cadastral areas, before and after land consolidations. In the studied area, the changes of land use involved 6.8 % of the total land consolidation area. This area of grassland significantly increased the protection of agricultural land from water erosion. In terms of changes in the landscape structure, the construction of new field road networks is the most important result. The results confirm the importance of land consolidation processes not only for the organization and recovery of ownership and cadastral records but also for the improvement of agricultural use of landscape and protection of natural resources such as soil, water and plant and animal communities.  相似文献   

11.
土壤有机碳动态:风蚀效应   总被引:10,自引:0,他引:10  
苏永中  赵文智 《生态学报》2005,25(8):2049-2054
土壤风蚀是引起土壤退化最广泛的形式和原因之一。土壤风蚀对土壤碳动态的影响机制一方面是土壤风蚀引起土壤退化使土壤生产力下降,输入土壤的碳数量减少;另一方面是富含有机碳的细粒物质直接移出系统。风蚀土壤碳的去向包括:(1)就近沉积,(2)沉积于水渠和河流,输入水体;(3)以粉尘形式运移,在远离风蚀区的地域沉积;(4)氧化释放至大气。风蚀引起土壤碳的迁移和沉积不仅导致土壤有机碳在地域间的再分布,使土壤性状的空间异质性增加,也显著改变了土壤系统中碳矿化的生物学过程。土壤有机碳的保持可以促进团聚体的形成,使土壤物理稳定性增加,减缓风蚀。对易风蚀土地进行退耕还林还草、实行保护性耕作等措施可以有效增加土壤碳的固存。  相似文献   

12.
The conservation of scarce land resources is essential to the long-term viability of agriculture in Rwanda. High population density, steep slopes, and abundant rainfall prevail in the highland portions of this African country, making the task of erosion control uncommonly difficult for the peasant farmer. The specific use to which land is put, e.g., cultivation, fallow, pasture, woodlots, and, if it is cultivated, the particular combination of crops grown, can be seen as contributing to both the cause and the solution of the land degradation problem. Based on data from a nationwide survey of over 4800 agricultural fields in Rwanda, this study reviews the extent to which the land use and cropping patterns employed by farmers are appropriately suited, in terms of erosion control, to the topographical and environmental characteristics of their landholdings. Analyses of other aspects of the traditional agricultural system, e.g., variations in relative soil fertility, the use of organic fertilizers, and the location of fields relative to the household, are introduced to help explain why farmers often fail to maximize erosion control through land use and cropping practices. Adjustments to current land use practices that can be expected to reduce soil loss are discussed.  相似文献   

13.
干旱半干旱区坡面覆被格局的水土流失效应研究进展   总被引:17,自引:0,他引:17  
植被恢复与建设是控制水土流失的重要措施.在干旱半干旱地区,植被在空间上的分布呈现离散特征,在坡面上形成的裸地-植被镶嵌和植被条带分布等覆被格局对水土流失过程具有重要影响.覆被格局与水土流失关系研究是景观生态学格局与过程研究的重要内容.从植被斑块、坡面覆被格局对水土流失的影响与耦合覆被格局与水土流失的手段和方法三个方面对国内外相关研究进行总结分析.从中发现,植被类型、层次结构和形态特征是植被斑块尺度上影响径流泥沙的关键因素;不同覆被类型的产流产沙特征与覆被格局的准确描述是研究覆被格局水土流失效应的重要基础;坡面覆被格局对水土流失的影响关键在于其改变了径流泥沙运移和汇集的连续性,应重点关注径流泥沙源汇区的连通性和空间分布在水土流失中的作用;以坡面的精确覆被制图为基础,建立基于水土流失过程的覆被格局指数和耦合格局信息的径流与侵蚀模型是定量研究覆被格局影响的有效手段.今后应加强以下研究:以动态系统的观点研究覆被格局的变化对水土流失的影响,系统理解覆被格局与水土流失之间的相互联系与反馈机制,探讨两者间动态关系随尺度变化的规律性并发展尺度上推方法;构建过程意义明确且简单实用的格局指数,将覆被格局与水土流失过程有机联系起来;发展覆被格局的动态信息与产流产沙过程相结合的水文模型,加强对格局与径流泥沙反馈系统的耦合,建立真正意义上的覆被格局-水土流失过程耦合模型.  相似文献   

14.
Bushmint (Hyptis suaveolens (L.) Poit.) is one among the world's most noxious weeds. Bushmint is rapidly invading tropical ecosystems across the world, including India, and is major threat to native biodiversity, ecosystems and livelihoods. Knowledge about the likely areas under bushmint invasion has immense importance for taking rapid response and mitigation measures. In the present study, we model the potential invasion range of bushmint in India and investigate prediction capabilities of two popular species distribution models (SDM) viz., MaxEnt (Maximum Entropy) and GARP (Genetic Algorithm for Rule-Set Production). We compiled spatial layers on 22 climatic and non-climatic (soil type and land use land cover) environmental variables at India level and selected least correlated 14 predictor variables. 530 locations of bushmint along with 14 predictor variables were used to predict bushmint distribution using MaxEnt and GARP. We demonstrate the relative contribution of predictor variables and species-environmental linkages in modeling bushmint distribution. A receiver operating characteristic (ROC) curve was used to assess each model's performance and robustness. GARP had a relatively lower area under curve (AUC) score (AUC: 0.75), suggesting its lower ability in discriminating the suitable/unsuitable sites. Relative to GARP, MaxEnt performed better with an AUC value of 0.86. Overall the outputs of MaxEnt and GARP matched in terms of geographic regions predicted as suitable/unsuitable for bushmint in India, however, predictions were closer in the spatial extent in Central India and Western Himalayan foothills compared to North-East India, Chottanagpur and Vidhayans and Deccan Plateau in India.  相似文献   

15.
 回顾了半干旱地区天然草地灌丛化的成因和机理、灌丛化导致草地土壤水分和养分空间异质性及其对生态系统生物地球化学过程的影响,以及土壤异质性与土地退化关系等方面的研究进展,周期性气候干旱和过度放牧是天然草地灌丛化的主要原因,伴随灌木入侵而出现的草地土壤水分和养分的空间异质性,是造成生态系统水分和养分流失,以及土壤加速侵蚀的原因之一。因此,半干旱地区天然草地的灌丛化应得到一定的控制,使群落中灌丛保持适宜的密度,以避免生态系统水分和养分的损失。  相似文献   

16.
岷江上游小流域景观格局对土壤侵蚀过程的影响   总被引:4,自引:0,他引:4  
以GIS为平台,利用泥沙输移分布模型模拟了岷江上游黑水流域和镇江关流域的流域侵蚀量、产沙量的空间分布,将模拟结果与土地利用图相结合,分析了各土地利用/覆被类型方式对侵蚀、产沙过程的影响,并利用景观空间负荷对比指数分析了土地利用/覆被类型随空间要素的配置、贡献权重和组成比例对土壤侵蚀的影响.结果表明:不同土地利用方式的土壤侵蚀模数不同,依次为裸岩>居民点>草地>农田>灌木林>林地;不同土地利用/覆被类型的产沙模数没有明显差异.2个流域土地利用/覆被类型随坡度的空间配置较优,随相对高度、相对距离和运移距离的空间配置较差;2个流域土地利用/覆被类型随着空间元素的配置各有优势,考虑土地利用/覆被类型的贡献权重后,镇江关流域的格局优势增加,当进一步考虑土地利用/覆被类型的组成比例时,镇江关流域的格局则优于黑水流域;只有综合考虑空间配置、贡献权重和组成比例,才能全面度量流域景观格局对土壤侵蚀的影响.坡度的景观空间负荷对比指数的构造不能准确地表现土地利用/覆被类型的贡献权重、组成比例对土壤侵蚀的影响,还需进一步改进.  相似文献   

17.
Ecologically meaningful predictors are often neglected in plant distribution studies, resulting in incomplete niche quantification and low predictive power of species distribution models (SDMs). Because environmental data are rare and expensive to collect, and because their relationship with local climatic and topographic conditions are complex, mapping them over large geographic extents and at high spatial resolution remains a major challenge. Here, we propose to derive environmental data layers by mapping ecological indicator values in space. We combined ~6 million plant occurrences with expert-based plant ecological indicator values (EIVs) of 3600 species in Switzerland. EIVs representing local soil properties (pH, moisture, moisture variability, aeration, humus and nutrients) and climatic conditions (continentality, light) were modelled at 93 m spatial resolution with the Random Forest algorithm and 16 predictors representing meso-climate, land use, topography and geology. Models were evaluated and predictions of EIVs were compared with soil inventory data. We mapped each EIV separately and evaluated EIV importance in explaining the distribution of 500 plant species using SDMs with a set of 30 environmental predictors. Finally, we tested how they improve an ensemble of SDMs compared to a standard set of predictors for ca 60 plant species. All EIV models showed excellent performance (|r| > 0.9) and predictions were correlated reasonably (|r| > 0.4) to soil properties measured in the field. Resulting EIV maps were among the most important predictors in SDMs. Also, in ensemble SDMs overall predictive performance increased, mainly through improved model specificity reducing species range overestimation. Combining large citizen science databases to expert-based EIVs is a powerful and cost–effective approach for generalizing local edaphic and climatic conditions over large areas. Producing ecologically meaningful predictors is a first step for generating better predictions of species distribution which is of main importance for decision makers in conservation and environmental management projects.  相似文献   

18.
研究土壤侵蚀与景观格局变化的关系对小流域的治理开发具有重要的指导意义。本研究以实施退耕还林草、生态农业、生态旅游及科技示范的黄土高原安塞南沟特色治理小流域为研究对象,基于GIS平台和通用土壤流失方程,分析小流域1981—2018年景观格局和土壤侵蚀量的时空演化特征,并利用主成分回归法,从斑块类型水平和景观水平两个尺度分析土壤侵蚀模数与3类9个景观格局指标的关系。结果表明: 研究期间,在5种景观类型中,耕地和林地面积的时空变化主导了南沟小流域景观格局的演化,并且影响整个小流域的聚集分散程度;南沟小流域的土壤侵蚀量逐年减少,1981—2018年土壤侵蚀面积减少29.7%,侵蚀模数减少61.2%,且有73.4%的区域土壤侵蚀强度减轻;耕地和林地面积的变化决定了整个小流域土壤侵蚀模数的变化,其景观格局指数的变化方向与该景观类型土壤侵蚀的变化方向一致;退耕还林草工程是流域景观格局变化、土壤侵蚀减轻的主要原因,特色开发治理可以减弱局部地区土壤侵蚀强度。景观类型的合理化配置能有效地防治小流域土壤侵蚀,将其与特色治理开发相结合有助于实现小流域可持续高质量发展。  相似文献   

19.
黄土丘陵小流域土壤侵蚀的时空变异及其影响因子   总被引:15,自引:0,他引:15  
邱扬  傅伯杰  王军  陈利顶 《生态学报》2004,24(9):1871-1877
采用土壤侵蚀模型LISEM(Limburg Soil Erosion Model)模拟黄土丘陵沟壑区大南沟小流域5种土地利用格局下立地尺度上土壤侵蚀量的空间分布,从土壤侵蚀量与环境因子的关系分析入手,研究黄土丘陵小流域立地尺度上土壤侵蚀的时空变异性及其影响因子.研究结果表明,立地尺度上平均土壤侵蚀强度以1975年>1998年>退耕格局,可见优化土地利用格局(陡坡农地退耕)可以有效地降低立地尺度上的土壤侵蚀强度.各种土地利用方案下土壤侵蚀强度的空间变异都很显著,相对来说以1975年<1998年<退耕格局,可见优化土地利用格局可以提高土壤侵蚀的空间变异性,降低土壤侵蚀危险的空间聚集度.土壤侵蚀量与降雨呈现显著正相关性,相关性以LU75>LU98>退耕格局,可见合理的土地利用格局可以有效地削弱降雨对土壤侵蚀强度的影响.土地利用方式对土壤侵蚀空间分布具有显著影响.从1975年、1998年到3种退耕格局,陡坡农地退耕还林还草,植被覆盖度增加,林地/灌木地、果园/经济林地、农地和休闲地的平均土壤侵蚀强度都逐渐降低.相关分析表明,林地/灌木地上土壤侵蚀量最小,荒草地相对最严重;果园、休闲地和农地居中.土壤侵蚀强度还存在显著的地形分异.水平凹凸度和相对海拔对土壤侵蚀空间分布的影响比较显著,而坡向、坡度和垂直凹凸度的影响较小.土壤侵蚀强度以水平凸坡大于水平凹坡、垂直凹坡略大于垂直凸坡、偏南坡大于偏北坡、低海拔大于高海拔.对1975年和1998年土地利用格局来说,土壤侵蚀强度以偏西坡大于偏东坡、陡坡大于缓坡;对3种退耕格局而言则正相反.可见,优化土地利用格局(陡坡农地退耕),可以有效地削弱甚至逆转地形对土壤侵蚀强度的影响.  相似文献   

20.
景观格局-土壤侵蚀研究中景观指数的意义解释及局限性   总被引:14,自引:0,他引:14  
刘宇  吕一河  傅伯杰 《生态学报》2011,31(1):267-275
景观格局分析是景观生态学研究的重要组成部分。景观指数是景观格局分析的有力工具。近年来,景观格局与土壤侵蚀关系的相关研究增多,常规景观格局指数得到应用。但针对土壤侵蚀过程的景观指数意义解释不足,景观指数在刻画景观格局-土壤侵蚀过程关系存在局限。选择了连接性、多样性、边界/斑块密度、形状4个方面的12个常用景观指数,对这些指数在景观格局-土壤侵蚀过程关系研究中的意义进行阐述,对指数应用的局限性及其原因进行了分析。景观数据属性、景观指数本身性质和土壤侵蚀过程的复杂性使得常规景观格局指数在景观格局-土壤侵蚀关系研究中存在不足。这3方面的影响使得常规景观格局指数与土壤侵蚀表征变量之间不存在确定的关系,从而难以通过景观指数来表征景观土壤侵蚀特征。缺乏土壤侵蚀过程基础是常规景观指数在土壤侵蚀研究应用中存在局限的主要原因。因此,构建基于土壤侵蚀过程的景观指数是景观格局-土壤侵蚀关系研究的需要和新的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号