首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hotspots of biodiversity are important areas in facilitating an understanding of species richness and its maintenance. Herbivores can increase plant richness by reducing dominant plant species thus providing space for subdominant species. As small mammals are abundant in the Succulent Karoo and therefore might affect plant richness by means of herbivory, we tested if this mechanism might exist in the Succulent Karoo in southern Africa, a biodiversity hotspot due to its extraordinary plant richness. At ten ecologically different study sites we measured plant and small mammal richness and diversity and determined 11 abiotic factors including soil composition, altitude and rainfall. We found positive correlations between plant richness and the number of small mammal species. A general linear model revealed that the number of small mammal species was more important than abiotic factors in explaining variation in plant richness. To test whether small mammals might directly influence plant richness, we studied the influence of the bush-Karoo rat Otomys unisulcatus, a central place forager, on the plant community. The immediate surroundings of occupied O. unisulcatus nests showed significantly higher plant richness than control areas. We conclude that small mammals can have a positive effect on plant richness in the Succulent Karoo. While experimental data are needed to support these correlative results, the results of our study indicate that areas of high small mammal richness should be included in conservation programs of the Succulent Karoo.  相似文献   

2.
An extensive study of vegetation changes as a consequence of fire and grazing pressure and their effect on small mammal populations inside the Maasai Mara National Reserve, Kenya, was carried out during May–June 1997. Comparison of vegetation maps from 1979 and 1998 suggested that vegetation in 46% of the Reserve area converted from shrubland to grassland, possibly as a result of fire and grazing pressure. We tested the hypothesis that in areas with high fire and grazing impact the population of small mammals was negatively affected. A low density of rodents was recorded in all habitats except in areas of human activity, where artificial resources are constantly present. Capture efforts were unsuccessful in grasslands. Our results confirm those of Norton‐Griffiths (1979) and Dublin (1995) , i.e. that fire and grazing pressure impact the vegetation of the Serengeti–Mara ecosystem and limit the natural regeneration of woodlands. This indirectly affects the small mammal community, which is limited in its long‐term establishment.  相似文献   

3.
The influence of grazing by water buffalo (Bubalas bufalis) and cattle (Bos taurus) was estimated for vegetation inside and outside cages in a saline area at Khon Kaen, Northeast Thailand. The home range of water buffalo and cattle shifted in response to the period of rice cultivation: during the rice-growing season these animals grazed on roadsides and abandoned places such as the study area; after rice harvest they grazed mainly rice stubble on the paddy. The vegetation in the study area was divided into three types: 1) dominated by the annual grassesChloris barbata andIschaemum rugosum; vegetational cover and plant height in the cage increase due to the increase of these grasses; 2) thorny shrub patch ofMaytenus mekongensis; other species in this patch almost died a year after experimental elimination of this shrub; this salt-tolerant shrub not only protected the co-existing species from grazing, but also suppressed salt accumulation; 3) almost pure stand ofPanicum repens; livestock preferred this perennial grass over others. Electrical conductivity (EC) of surface soil did not increase under the vegetation protected from grazing. Litter and other organic matter in the soil suppressed the upward movement of brine. Grazing led to an increase of bare ground where NaCl accumulated, and modified the heterogeneity of vegetation, which was reflected in the degree of salt accumulation.  相似文献   

4.
Glasshouse and mini-sward experiments were done to determine the relative roles of grazing and trampling by livestock in transmitting white clover mosaic (WC1MV) and subterranean clover mottle (SCMoV) viruses between clover plants in pastures. Wounding due to grazing was simulated by repeatedly cutting plants with serrated scissors (glasshouse) or mowing (mini-swards), while wounding due to trampling was simulated by repeatedly bashing plants with the flat end of a wooden hammer handle (glasshouse) or rolling (mini-swards). In glasshouse experiments, cutting was more effective than bashing in transmitting WC1MV to white clover (Trifolium repens) plants but cutting and bashing transmitted it to subterranean clover (T. subterraneum) plants at similar rates. In an experiment with white clover mini-swards, mowing was more effective than rolling in transmitting WC1MV, and when both were combined, initially spread exceeded that obtained when the spread from mowing and rolling alone was added together. In glasshouse experiments, bashing was more effective than cutting in transmitting SCMoV to subterranean clover plants. In one experiment, neither mowing nor rolling spread SCMoV in mini-swards of subterranean clover. When transmission to subterranean clover cultivars which were ‘susceptible’ or ‘moderately susceptible’ to SCMoV was compared in glasshouse experiments, repeated bashing spread the virus more slowly to the ‘moderately susceptible’ cultivars. When mixed with ruminant saliva, infective sap containing WC1MV or SCMoV was still infective to clover plants after 4 wk storage at room temperature. When infective sap was allowed to dry naturally on a metal surface, SCMoV still infected clover plants when the dried sap was taken up in tap water after 4 but not 14 days, while WC1MV was infective after 24 h but not 4 days. These results suggest that grazing and mowing are more effective than trampling at transmitting WC1MV to white clover plants in pastures, while trampling is more effective at spreading SCMoV to subterranean clover. However, both transmitted WC1MV to subterranean clover at similar rates. Possible reasons for these differences are discussed in relation to differences in clover plant morphology and virus-specific factors.  相似文献   

5.
Background: The occurrence of shrub patches, alternating with either bare soil or low herbaceous cover, is a common feature in arid and semi-arid shrublands throughout the world. This patchy pattern of vegetation may result from water limitation, modulated by plant interactions; grazing (offtake and tramping) by livestock may cause further patchiness vegetation structure.

Aims: We hypothesised that vegetation patchiness in the semi-arid shrublands of north-eastern Patagonia would be increased by livestock grazing, but not by positive interactions between adult plants of shrubs and grasses.

Methods: We compared vegetation cover and pattern at three grazing intensities (exclosure, light and heavy grazing) and measured the growth of a representative shrub and grass in the presence and absence of the other to quantify the role of plant-to-plant interactions and its interaction with grazing for vegetation structure.

Results: In the grazing exclosure and in moderately grazed areas, vegetation cover among shrub patches was larger, whereas the top cover of shrubs was lower than in the heavily grazed areas. We did not find any evidence of positive interactions between shrub and grass life forms.

Conclusions: Our results were consistent with the hypothesis that livestock grazing increased the formation of patchy vegetation cover in arid and semi-arid shrublands.  相似文献   


6.
The structure of vegetation, and how this structure varies across a landscape, is crucial to understanding the distribution of wildlife species. Between 2002 and 2004, we sampled small mammal communities and measured vegetation structure at 185 locations across a range of disturbance regimes in a shortgrass prairie ecosystem in southeastern Colorado, USA. At each sampling location, the local disturbance regime was some combination of varying intensity of livestock grazing, military training activity, and fire. Vegetation structural characteristics measured included percent bare ground, basal cover, litter, shrub density, and mean grass and shrub height. Rodent communities were described by richness, diversity, total and per capita biomass, and species abundances. Northern grasshopper mice (Onychomys leucogaster), Ord's kangaroo rats (Dipodomys ordii), silky pocket mice (Perognathus flavus), western harvest mice (Reithrodontomys megalotis), white-footed mice (Peromyscus leucopus), southern plains wood rats (Neotoma micropus), thirteen-lined ground squirrels (Spermophilus tridecemlineatus), deer mice (Peromyscus maniculatus), and spotted ground squirrels (Spermophilus spilosoma) accounted for >99 % of all captures. Canonical correlation analysis was used to assess the relationship between small mammals and vegetation structure. The first two canonical variates explained over 50 % of the variation in vegetation structure and were related to the ratio of bare ground to basal coverage and litter accumulation. Rodent community indices were most strongly related to litter accumulation and shrub density, though the models had low explanatory power. Our results agreed with published findings regarding microhabitat associations and indicated small mammal communities benefited from a system of interacting disturbances and the resulting landscape mosaic.  相似文献   

7.
Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.  相似文献   

8.
9.
10.
This study examined the selection of habitat by Ningaui yvonneae , a small, nocturnal insectivorous marsupial of semi-arid regions of southern Australia. In addition to idengifying habitat preferences, the study was concerned with idengifying how habitats were used, and for what purpose they were valued. Triodia irritans (hummock grass) was the most preferred habitat component overall. However, other habitat components were found to be of equal or greater preference during certain seasons and for certain behaviours. The importance of considering behaviour in studies of habitat selection was discussed. Habitat selection by N. yvonneae appeared to be influenced by predation risk and energetic reward. The selection for Triodia is thought to be due to its provision of protection and foraging opportunities. However, leaf litter was preferred over Triodia for foraging, possibly because it offered greater energetic returns. To minimise predation risk while in leaf litter, ningauis remained close to Triodia and moved larger prey items to the edge of Triodia for consumption.  相似文献   

11.
野生大熊猫与放牧家畜的活动格局比较   总被引:1,自引:0,他引:1  
活动格局是动物内在机制和环境作用所表现出来的昼夜活动节律及其活动水平的行为生态特征,影响着动物的能量代谢能力、觅食行为策略和进化适应。通过内置活动传感器的GPS颈圈,于2010—2012年在四川卧龙国家级自然保护区的"核桃坪"及其毗邻区域,采集了野生大熊猫和放牧家畜的大量活动数据。分别选择3只成年大熊猫和3个马群的代表性个体作为样本,引入活动强度、活动时间百分率、活动时间片段率和活动片段时长等指标进行了两者之间的比较,以揭示大熊猫和放牧家畜在时间利用方面的内在特征。结果表明:野生大熊猫和放牧家畜在活动强度、活动时间百分率和活动时间片段率等方面都具有极显著性差异(P0.0001),仅两者之间的活动片段时长无明显的统计学意义(P=0.4107)。野生大熊猫表现为活动水平低、活动时间少、活动片段率高和活动片段时长短等特征的活动格局,且不同月份(季度)之间变化较大(P0.0001);放牧家畜则呈现出相异的时间利用规律,即活动水平高、活动时间多、活动时间片段率稍低和活动片段时长略长等特性。不同的时间利用规律和不同的空间利用模式,造成动物之间对栖息地、食物资源和伴生动物的利用方式、影响强度和空间分布的截然不同。因而,合理规划和管控放牧家畜的散养区域与数量,是自然保护管理与社区经济发展相协调的有效途径之一。  相似文献   

12.
Kaouthar Jeddi  Mohamed Chaieb 《Flora》2010,205(3):184-189
In this study, characteristics of vegetation and soil properties under continued grazing and exclusion of livestock for 6 and 12 years were examined in a degraded Stipa tenacissima steppe in South Tunisia.  相似文献   

13.
The root system of permanent grasslands is of outstanding importance for resource acquisition. Particularly under semi-arid conditions, the acquisition of water and nutrients is highly variable during the vegetation growth period and between years. Additionally, grazing is repeatedly disturbing the functional equilibrium between the root system and the transpiring leaf canopy. However, very few data is available considering grazing effects on belowground net primary productivity (BNPP) and root-shoot dry mass allocation in natural grassland systems. We hypothesise that grazing significantly reduces BNPP due to carbon reallocation to shoot growth. Root biomass and BNPP were estimated by soil coring in 2004, 2005 and 2006 and from ingrowth cores in 2005 and 2006 at one site which has been protected from grazing since 1979 (UG79), at one winter grazing (WG), and one heavily grazed (HG) site. BNPP was estimated from the summation of significant increments of total and live root biomass and from accumulated root biomass of ingrowth cores. Belowground biomass varied from 1,490–2,670 g m?2 and was significantly lower under heavy grazing than at site UG79. Root turnover varied from 0.23 to 0.33 year?1 and was not significantly different between sites. Heavy grazing significantly decreased live root biomass and BNPP compared to site UG79. Taking BNPP estimates from live root biomass dynamics and ingrowth cores as the most reliable values, the portion of dry mass allocated belowground relative to total net primary productivity (BNPP/NPP) varied between 0.50–0.66 and was reduced under heavy grazing in 2005, but not in 2006. The positive correlation between cumulative root length density of ingrowth cores and leaf dry matter suggests that the ingrowth core method is suitable for studying BNPP in this semi-arid steppe system. Grazing effects on BNPP and BNPP/NPP should be considered in regional carbon models and estimates of belowground nutrient cycling.  相似文献   

14.
对围封13年且放牧的冷季高寒矮嵩草草甸,进行了从围栏入口到内部不同距离植被和土壤碳密度状况的调查.结果表明:1)入口到50 m植被现存碳密度平均为1298.0gC·m-2,60~180m有所下降(平均为997.3 g C·m-2),200~300 m反而升高(平均为1285.5 g C·m-2).当年净初级生产碳密度分布趋势与其相同,0~50 m、60 ~180 m和200~300 m平均分别为742.5、571.0和745.7 g C·m-2.这种分布趋势与放牧过程中绵羊觅食频度和强度有关.一般在中央地带放牧强度大,绵羊觅食时间长,边缘地带受围栏效应或围栏外环境因素影响,放牧强度相对较弱,一定程度上对植被生长发育起到了保护作用,使边缘地带植被碳密度得到提高.2)从围栏入口到草场内部土壤碳密度变化趋势表现复杂,入口到100 m增加,100~170 m减小,然后略有升高.土壤碳密度最高值出现在95 m处(15.42 g C·m-2),最低值出现在170 m处(14.12 gC· m-2).目前尚不清楚为何出现这种格局,但至少认为,土壤有机质的动态转化过程受多种因素影响,与植被碳密度相比具有一定的迟滞效应.具体如何影响有机质的动态转化及其迟滞效应,有待进一步研究.  相似文献   

15.
In grassland systems across the globe, ecologists have been attempting to understand the complex role of fire, grazing and rainfall in creating habitat heterogeneity and the consequences of anthropogenic control of these factors on ecosystem integrity and functioning. Using a South African grassland ecosystem as a model, we investigated the impact of fire and grazing pressure on small mammal communities during three differing periods of a rainfall cycle. Over 2 years, 15,203 trap nights revealed 1598 captures of 11 species (nine rodents, one macroscelid and one insectivore). Results highlighted the importance of the interplay between factors and showed that the role of fire, grazing and rainfall in determining small mammal abundance was species-dependant. While no two species were affected by the same environmental variables, grass cover or height was important to 56% of species. Considered independently, high rainfall had a positive influence on small mammal abundance and diversity, although the lag period in population response was species-specific. High grazing negatively affected overall abundance, but specifically in Mastomys coucha; fire alone had little immediate impact on small mammal diversity. Six months after the fire, vegetation cover had recovered to similar levels as unburned areas, although small mammal diversity and richness were higher in burned areas than unburned areas. Grazing levels influenced the rate of vegetation recovery. In conclusion, low-level grazing and burning can help to maintain small mammal biodiversity, if conducted under appropriate rainfall levels. A too high grazing pressure, combined with fire, and/or fire conducted under drought conditions can have a negative impact on small mammal biodiversity. To maintain small mammal diversity in grassland ecosystems, the combined effects of the previous year’s rainfall and existing population level as well as the inhibition of vegetation recovery via grazing pressure need to be taken into consideration before fire management is applied. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

17.
The seasonal abundance of Latrodectus katipo Powell, 1871, a declining spider species endemic to coastal dunes in New Zealand, was observed in two different plant communities: an endemic sedge, Ficinia spiralis A. Rich. and an exotic grass, Ammophila arenaria (L.) Link. Using artificial cover objects (ACOs), presence/absence data was collected for L. katipo in the two plant communities. ACOs were positioned at Kaitorete Spit, which supports a healthy population of L. katipo, adjacent to F. spiralis or A. arenaria. ACOs were checked over four seasons. L. katipo were found significantly more often in ACOs placed next to F. spiralis as opposed to A. arenaria and its presence was highest in summer. Conserving L. katipo will involve reducing the amount of A. arenaria in New Zealand’s sand dunes. Studies monitoring L. katipo population dynamics should do so in summer when they are most abundant.  相似文献   

18.
Semi-natural grasslands are an important habitat for endangered plant and animal species. In grasslands, low-intensity livestock grazing is frequently applied as a tool for nature conservation. We aim to investigate how different livestock species in various densities influence the state and flower production of a single plant species by selective defoliation and/or trampling. We hypothesized that (1) moderate stocking densities would cause more damage than low, and that (2) horses would cause more damage than cattle due to their higher activity. The experiment took place in a salt marsh in the Netherlands where grazing treatments with horses and cattle in two stocking densities were installed. Damage to individual Aster tripolium plants and number of flower heads were recorded at the end of the grazing season in late September. We found (1) more damage and fewer flower heads in moderate stocking densities compared to low densities. However, a reduction of flower heads by higher stocking densities was less clear with cattle. No clear difference (2) between livestock species was found, due to opposite trends in moderate and low densities. At low stocking densities, cattle caused more damage by selective defoliation. At moderate densities, horses caused more damage, because of their higher mobility, which led to damage by trampling. We conclude that the response of Aster to grazing is strongly affected by behavioral differences between livestock species. Grazing experiments and management schemes for semi-natural grasslands should therefore not only consider stocking densities, but also livestock species to reach desired conservation goals.  相似文献   

19.
James G. Hallett 《Oecologia》1991,88(3):383-393
Summary I examined questions about the local and global stability and resilience characteristics of six small mammal faunas and their relationship to connectance, average interaction strength, community covariance, and indirect competitive pathways. Community matrices estimated elsewhere were used in the analyses. The faunas had from three to nine species and represented several habitat types. The following properties were observed: (1) all community matrices were globally stable, (2) return rates to equilibrium were generally maximized, and (3) competitive interactions were strictly hierarchical. Global stability resulted from a reduction in connectance with increasing species and not from structural characteristics (i.e., community covariance). Average interaction strength did not change with the number of species in these faunas. Increased resilience was due largely to reduced community covariance. Two of the six faunas showed some evidence for indirect pathways, but this appeared to be artifactual. Randomizations of the original community matrices showed that indirect pathways have a high probability of occurrence. Monte Carlo simulations indicated that the probability of indirect pathways increases with increasing number of species or magnitude of competition. These results bring into question previous observational studies invoking indirect competitive pathways. Communities without indirect pathways have a special linear hierarchical structure. This structure has greater resilience than when indirect pathways are present. The observed patterns in community structure are discussed with regard to current theories of habitat selection.  相似文献   

20.
The effect of different levels of cattle grazing on an arid Australian small terrestrial mammal and lizard assemblage was assessed in a long‐tem series of cross‐fence comparisons. Cross‐fenced sites were closely matched for edaphic and vegetation characteristics and experienced near identical weather patterns, to ensure that cattle grazing pressure was the principal determinant of any differences in fauna assemblages. In addition, the effects of removal of cattle, cats, foxes and rabbits from three of these long‐term monitoring sites were assessed to determine the relative impacts of cattle grazing and feral animals. Small mammal captures, with the exception of Mus musculus, revealed a significant negative response to cattle grazing pressure but this response was of a considerably lower magnitude than the dramatic increase in rodent captures and species richness within the feral animal‐proof Arid Recovery Reserve. Higher kangaroo numbers in ungrazed controls, compared with treatments grazed by cattle, possibly negated the benefits to small mammals of removing cattle grazing. No reptile species responded significantly to the grazing treatments although reptile richness and captures of geckos and skinks were the lowest and agamid captures were the highest at heavily grazed sites. Nephrurus levis was the only reptile species to increase significantly, while captures of some smaller geckoes declined, within the feral‐proof treatment. Feral predation exerted a more significant effect on most small mammal species than the levels of cattle grazing assessed in this study, yet reptile responses to grazing or feral animals were less apparent and were likely primarily driven by changes in vegetation cover or secondary trophic impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号