首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although neuronal functions depend on their robust polarity, the mechanisms that ensure generation and maintenance of only a single axon remain poorly understood. Using highly sensitive two-dimensional electrophoresis-based proteomics, we identified here a novel protein, single axon-related (singar)1/KIAA0871/RPIPx/RUFY3, which contains a RUN domain and is predominantly expressed in the brain. Singar1 expression became up-regulated during polarization of cultured hippocampal neurons and remained at high levels thereafter. Singar1 was diffusely localized in hippocampal neurons and moderately accumulated in growth cones of minor processes and axons. Overexpression of singar1 did not affect normal neuronal polarization but suppressed the formation of surplus axons induced by excess levels of shootin1, a recently identified protein located upstream of phosphoinositide-3-kinase and involved in neuronal polarization. Conversely, reduction of the expression of singar1 and its splicing variant singar2 by RNA interference led to an increase in the population of neurons bearing surplus axons, in a phosphoinositide-3-kinase-dependent manner. Overexpression of singar2 did not suppress the formation of surplus axons induced by shootin1. We propose that singar1 ensures the robustness of neuronal polarity by suppressing formation of surplus axons.  相似文献   

2.
Neurons have the remarkable ability to polarize even in symmetrical in vitro environments. Although recent studies have shown that asymmetric intracellular signals can induce neuronal polarization, it remains unclear how these polarized signals are organized without asymmetric cues. We describe a novel protein, named shootin1, that became up-regulated during polarization of hippocampal neurons and began fluctuating accumulation among multiple neurites. Eventually, shootin1 accumulated asymmetrically in a single neurite, which led to axon induction for polarization. Disturbing the asymmetric organization of shootin1 by excess shootin1 disrupted polarization, whereas repressing shootin1 expression inhibited polarization. Overexpression and RNA interference data suggest that shootin1 is required for spatially localized phosphoinositide-3-kinase activity. Shootin1 was transported anterogradely to the growth cones and diffused back to the soma; inhibiting this transport prevented its asymmetric accumulation in neurons. We propose that shootin1 is involved in the generation of internal asymmetric signals required for neuronal polarization.  相似文献   

3.
Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow-CAM linkage model ("clutch" model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.  相似文献   

4.
Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.  相似文献   

5.
Mutations in the X-linked CDKL5 (cyclin-dependent kinase-like 5) gene have been associated with several forms of neurodevelopmental disorders, including atypical Rett syndrome, autism spectrum disorders, and early infantile epileptic encephalopathy. Accordingly, loss of CDKL5 in mice results in autistic-like features and impaired neuronal communication. Although the biological functions of CDKL5 remain largely unknown, recent pieces of evidence suggest that CDKL5 is involved in neuronal plasticity. Herein, we show that, at all stages of development, neuronal depolarization induces a rapid increase in CDKL5 levels, mostly mediated by extrasomatic synthesis. In young neurons, this induction is prolonged, whereas in more mature neurons, NMDA receptor stimulation induces a protein phosphatase 1-dependent dephosphorylation of CDKL5 that is mandatory for its proteasome-dependent degradation. As a corollary, neuronal activity leads to a prolonged induction of CDKL5 levels in immature neurons but to a short lasting increase of the kinase in mature neurons. Recent results demonstrate that many genes associated with autism spectrum disorders are crucial components of the activity-dependent signaling networks regulating the composition, shape, and strength of the synapse. Thus, we speculate that CDKL5 deficiency disrupts activity-dependent signaling and the consequent synapse development, maturation, and refinement.  相似文献   

6.
The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC‐derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.  相似文献   

7.
Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for these neurons they will continue to develop, forming functional synaptic connections and surviving for several months in culture. In this protocol we outline a technique to dissect, culture and transfect embryonic mouse hippocampal and cortical neurons. Transfection is accomplished by electroporating DNA into the neurons before plating via nucleofection. This protocol has the advantage of expressing fluorescently-tagged fusion proteins early in development (~4-8hrs after plating) to study the dynamics and function of proteins during polarization, axon outgrowth and branching. We have also discovered that this single transfection before plating maintains fluorescently-tagged fusion protein expression at levels appropriate for imaging throughout the lifetime of the neuron (> 2 months in culture). Thus, this methodology is useful for studying protein localization and function throughout CNS development with little or no disruption of neuronal function.  相似文献   

8.
A pivotal event in neural development is the point at which differentiating neurons become competent to extend long axons. Initiation of axon growth is equally critical for regeneration. Yet we have a limited understanding of the signaling pathways that regulate the capacity for axon growth during either development or regeneration. Expression of a number of genes encoding growth associated proteins (GAPs) accompanies both developmental and regenerative axon growth and has led to the suggestion that the same signaling pathways regulate both modes of axon growth. We have tested this possibility by asking whether a promoter fragment from a well characterized GAP gene, GAP-43, is sufficient to activate expression in both developing and regenerating neurons. We generated stable lines of transgenic zebrafish that express green fluorescent protein (GFP) under regulation of a 1 kb fragment of the rat GAP-43 gene, a fragment that contains a number of evolutionarily conserved elements. Analysis of GFP expression in these lines confirms that the rat 1 kb region can direct growth-associated expression of the transgene in differentiating neurons that extend long axons. Furthermore, this region supports developmental down-regulation of transgene expression which, like the endogenous gene, coincides with neuronal maturation. Strikingly, these same sequences are insufficient for directing expression in regenerating neurons. This finding suggests that signaling pathways regulating axon growth during development and regeneration are not the same. While these results do not exclude the possibility that pathways involved in developmental axon growth are also active in regenerative growth, they do indicate that signaling pathway(s) controlling activation of the GAP-43 gene after CNS injury differ in at least one key component from the signals controlling essential features of developmental axon growth.  相似文献   

9.
The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5) on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.  相似文献   

10.
Neuron polarization is essential for the formation of one axon and multiple dendrites, establishing the neuronal circuitry. Phosphoinositide 3-kinase (PI3K) signaling promotes axon selection and elongation. Here we report in hippocampal neurons siRNA knockdown of the proline-rich inositol polyphosphate 5-phosphatase (PIPP), which degrades PI3K-generated PtdIns(3,4,5)P(3), results in multiple hyperelongated axons consistent with a polarization defect. We identify collapsin response mediator protein 2 (CRMP2), which regulates axon selection by promoting WAVE1 delivery via Kinesin-1 motors to the axon growth cone, as a PIPP-interacting protein by Y2H screening, direct binding studies, and coimmunoprecipitation of an endogenous PIPP, CRMP2, and Kinesin-1 complex from brain lysates. The C-terminal growth cone-targeting domain of PIPP facilitates its interaction with CRMP2. PIPP growth cone localization is CRMP2-dependent. PIPP knockdown in PC12 cells promotes neurite elongation, WAVE1 and Kinesin-1 growth cone localization, whereas knockdown of CRMP2 exhibits the opposite phenotype, with shorter neurites and decreased WAVE1/Kinesin-1 at the growth cone. In contrast, CRMP2 overexpression promotes neurite elongation, a phenotype rescued by full-length PIPP, or expression of the CRMP2-binding PIPP domain. Therefore this study identifies PIPP and CRMP2 exert opposing roles in promoting axon selection and neurite elongation and the complex between these proteins serves to regulate the localization of effectors that promote neurite extension.  相似文献   

11.
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.  相似文献   

12.
The GTPase Rnd1 affects actin dynamics antagonistically to Rho and has been implicated in the regulation of neurite outgrowth, dendrite development, and axon guidance. Here we show that Rnd1 interacts with the microtubule regulator SCG10. This interaction requires a central domain of SCG10 comprising about 40 amino acids located within the N-terminal-half of a putative alpha-helical domain and is independent of phosphorylation at the four identified phosphorylation sites that regulate SCG10 activity. Rnd1 enhances the microtubule destabilizing activity of SCG10 and both proteins colocalize in neurons. Knockdown of Rnd1 or SCG10 by RNAi suppressed axon extension, indicating a critical role for both proteins during neuronal differentiation. Overexpression of Rnd1 in neurons induces the formation of multiple axons. The effect of Rnd1 on axon extension depends on SCG10. These results indicate that SCG10 acts as an effector downstream of Rnd1 to regulate axon extensions by modulating microtubule organization.  相似文献   

13.
Proper development of neuronal networks relies on the polarization of the neurons, thus the establishment of two compartments, axons and dendrites, whose formation depends on cytoskeletal rearrangements. Rnd proteins are regulators of actin organization and they are important players in several aspects of brain development as neurite formation, axon guidance and neuron migration. We have recently demonstrated that mice lacking RhoE/Rnd3 expression die shortly after birth and have neuromotor impairment and neuromuscular alterations, indicating an abnormal development of the nervous system. In this study, we have further investigated the specific role played by RhoE in several aspects of neuronal development by using hippocampal neuron cultures. Our findings show that neurons from a mice lacking RhoE expression exhibit a decrease in the number and the total length of the neurites. We also show that RhoE-deficient neurons display a reduction in axon outgrowth and a delay in the process of neuronal polarization. In addition, our results suggest an involvement of the RHOA/ROCK/LIMK/COFILIN signaling pathway in the neuronal alterations induced by the lack of RhoE. These findings support our previous report revealing the important role of RhoE in the normal development of the nervous system and may provide novel therapeutic targets in neurodegenerative disorders.  相似文献   

14.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

15.
The axon initial segment (AIS) functions as both a physiological and physical bridge between somatodendritic and axonal domains. Given its unique molecular composition, location, and physiology, the AIS is thought to maintain neuronal polarity. To identify the molecular basis of this AIS property, we used adenovirus-mediated RNA interference to silence AIS protein expression in polarized neurons. Some AIS proteins are remarkably stable with half-lives of at least 2 wk. However, silencing the expression of the cytoskeletal scaffold ankyrinG (ankG) dismantles the AIS and causes axons to acquire the molecular characteristics of dendrites. Both cytoplasmic- and membrane-associated proteins, which are normally restricted to somatodendritic domains, redistribute into the former axon. Furthermore, spines and postsynaptic densities of excitatory synapses assemble on former axons. Our results demonstrate that the loss of ankG causes axons to acquire the molecular characteristics of dendrites; thus, ankG is required for the maintenance of neuronal polarity and molecular organization of the AIS.  相似文献   

16.
Neuronal polarization: the cytoskeleton leads the way   总被引:1,自引:0,他引:1  
The morphology of cells is key to their function. Neurons extend a long axon and several shorter dendrites to transmit signals in the nervous system. This process of neuronal polarization is driven by the cytoskeleton. The first and decisive event during neuronal polarization is the specification of the axon. Distinct cytoskeletal dynamics and organization of the cytoskeleton determine the future axon while the other neurites become dendrites. Here, we will review how the cytoskeleton and its effectors drive axon specification and neuronal polarization. First, the role of the actin cytoskeleton and microtubules in axon specification will be presented. Then, we will discuss the role of the centrosome in axon determination as well as how microtubules are generated in axons and dendrites. Finally, we will discuss potential mechanisms leading to axon specification, such as positive feedback loops that could be a coordinated interaction between actin and microtubules. Together, this review will present the recent advances on the role of the microtubules and the actin cytoskeleton during neuronal polarization. We will pinpoint the upcoming challenges to gain a better understanding of neuronal polarization on a fundamental intracellular level. Finally, we will outline how reactivation of the intrinsic polarization program may help to induce axon regeneration after CNS injury.  相似文献   

17.
Members of the Cas family of Src homology 3 (SH3)-domain-containing cytosolic signaling proteins are crucial regulators of actin cytoskeletal dynamics in non-neuronal cells; however, their neuronal functions are poorly understood. Here, we identify a Drosophila Cas (DCas), find that Cas proteins are highly expressed in neurons and show that DCas is required for correct axon guidance during development. Functional analyses reveal that Cas specifies axon guidance by regulating the degree of fasciculation among axons. These guidance defects are similar to those observed in integrin mutants, and genetic analysis shows that integrins function together with Cas to facilitate axonal defasciculation. These results strongly support Cas proteins working together with integrins in vivo to direct axon guidance events.  相似文献   

18.
Lee SH 《Molecules and cells》2005,20(2):256-262
The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-beta-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, beta-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.  相似文献   

19.
The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification.  相似文献   

20.
Kunik D  Dion C  Ozaki T  Levin LA  Costantino S 《PloS one》2011,6(11):e26832
The investigation of the regenerative response of the neurons to axonal injury is essential to the development of new axoprotective therapies. Here we study the retinal neuronal RGC-5 cell line after laser transection, demonstrating that the ability of these cells to initiate a regenerative response correlates with axon length and cell motility after injury. We show that low energy picosecond laser pulses can achieve transection of unlabeled single axons in vitro and precisely induce damage with micron precision. We established the conditions to achieve axon transection, and characterized RGC-5 axon regeneration and cell body response using time-lapse microscopy. We developed an algorithm to analyze cell trajectories and established correlations between cell motility after injury, axon length, and the initiation of the regeneration response. The characterization of the motile response of axotomized RGC-5 cells showed that cells that were capable of repair or regrowth of damaged axons migrated more slowly than cells that could not. Moreover, we established that RGC-5 cells with long axons could not recover their injured axons, and such cells were much more motile. The platform we describe allows highly controlled axonal damage with subcellular resolution and the performance of high-content screening in cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号