首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

2.
Summary

Isolated oocytes of Perinereis cultrifera have been incubated in culture media with added [3H]glycerol, [14C]butyric acid or [14C]oleic acid. The principal neutral lipid synthesized was triacylglycerol, although incorporation of radioactivity into other lipid categories (sterol, fatty acid, wax ester) was also observed. A more significant percentage of triacylglycerol was labelled after incubation with [3H]glycerol and [14C]oleic acid than with [14C]butyric acid. With this precursor, monoacylglycerol appears to be the class of lipid compartment which initially show the most radioactivity. Electron microscopic autoradiography has revealed that labelling after incorporation of glycerol was mainly localized on the lipid droplets but not on the yolk granules. A second metabolic pathway is represented by phospholipid membrane synthesis.  相似文献   

3.
Quantitative flux maps describing glycerolipid synthesis can be important tools for rational engineering of lipid content and composition in oilseeds. Lipid accumulation in cultured embryos of Camelina sativa is known to mimic that of seeds in terms of rate of lipid synthesis and composition. To assess the kinetic complexity of the glycerolipid flux network, cultured embryos were incubated with [14C/13C]glycerol, and initial and steady state rates of [14C/13Cglyceryl] lipid accumulation were measured. At steady state, the linear accumulations of labeled lipid classes matched those expected from mass compositions. The system showed an apparently simple kinetic precursor–product relationship between the intermediate pool, dominated by diacylglycerol (DAG) and phosphatidylcholine (PC), and the triacylglycerol (TAG) product. We also conducted isotopomer analyses on hydrogenated lipid class species. [13C3glyceryl] labeling of DAG and PC, together with estimates of endogenous [12C3glyceryl] dilution, showed that each biosynthetically active lipid pool is ∼30% of the total by moles. This validates the concept that lipid sub-pools can describe lipid biosynthetic networks. By tracking the kinetics of [13C3glyceryl] and [13C2acyl] labeling, we observed two distinct TAG synthesis components. The major TAG synthesis flux (∼75%) was associated with >95% of the DAG/PC intermediate pool, with little glycerol being metabolized to fatty acids, and with little dilution from endogenous glycerol; a smaller flux exhibited converse characteristics. This kinetic heterogeneity was further explored using postlabeling embryo dissection and differential lipid extractions. The minor flux was tentatively localized to surface cells across the whole embryo. Such heterogeneity must be recognized in order to construct accurate gene expression patterns and metabolic networks describing lipid biosynthesis in developing embryos.  相似文献   

4.
The requirements for microsomal triglyceride transfer protein (MTP) during the turnover and transfer of glycerolipids from intracellular compartments into secretory very low-density lipoprotein (VLDL) were studied by pre-labelling lipids with [3H]glycerol and [14C]oleate in primary cultures of rat hepatocytes. The intracellular redistribution of pre-labelled glycerolipids was then compared at the end of subsequent chase periods during which the MTP inhibitor BMS-200150 was either present or absent in the medium. Inhibition of MTP resulted in a decreased output of VLDL triacylglycerol (TAG) and a delayed removal of labelled TAG from the cytosol and from the membranes of the smooth endoplasmic reticulum (SER), the cis- and the trans-Golgi. Inactivation of MTP did not decrease the bulk lipolytic turnover of cellular TAG as reflected by changes in its [3H]glycerol:[14C]oleate ratios. However, a larger proportion of the resultant TAG fatty acids was re-esterified and remained with the membranes of the various subcellular fractions rather than emerging as VLDL. The effects of BMS-200150 on the pattern of phospholipid (PL) mechanism and redistribution suggested that inhibition of MTP prevented the normal lipolytic transfer of PL-derived fatty acids out of the SER, cis- and trans-Golgi membrane pools. Finally, changes in the 14C specific radioactivities of the cytosolic and membrane pools of TAG suggested that inhibition of MTP prevented a normal influx of relatively unlabelled fatty acids into these pools during the chase period.  相似文献   

5.
Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-3H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-3H]glycerol and [1-14C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-14C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells.  相似文献   

6.
杨淼  王海涛  薛松 《微生物学通报》2018,45(5):996-1006
【背景】三角褐指藻作为生物燃料潜在的生产者,在胁迫条件下能通过改变其甘油酯组成来适应外部环境的变化,同时伴随着生物燃料原料甘油三酯(TAG)的积累,研究三角褐指藻甘油酯对氮胁迫的响应机制有利于深入认识TAG的积累过程。【目的】通过分析三角褐指藻在正常和氮胁迫条件下各类脂质含量及其脂肪酸成分的变化,揭示氮胁迫诱导积累的TAG酰基主要来源,以及在胁迫前生成的各极性甘油酯脂肪酸的去向,从而为进一步认识三角褐指藻对氮胁迫的响应机制提供新信息。【方法】利用高效薄层色谱结合气相色谱法分析三角褐指藻在正常和氮胁迫条件下的脂肪酸及甘油酯组分的变化。【结果】三角褐指藻在氮胁迫条件下TAG含量增加至57.8 mg/g时,总甘油酯含量几乎不变,但各甘油酯含量变化差异很大,表现为各极性脂含量显著降低。在此期间,各类甘油酯脂肪酸组成含量的变化表明,三角褐指藻TAG主要积累饱和及单不饱和脂肪酸,即16:0和16:1n7,分别以从头合成及原有极性脂转化为主,极性脂的部分二十碳五烯酸(EPA)作为酰基供体也向TAG发生了转化;此外组成极性脂的多不饱和脂肪酸16:2n4、16:3n4及EPA分解导致其含量显著下降。【结论】当氮胁迫诱导的三角褐指藻TAG含量为57.8 mg/g时,积累的TAG酰基中有48%来自从头合成,52%来自极性脂转化;而氮胁迫诱导所减少的极性脂酰基中有54%转化成TAG,46%发生了分解。  相似文献   

7.
Metabolism of triacylglycerol (TAG) in developing brain has been examined. TAG is a relatively minor fraction of brain lipid in both suckling and adult rats and cannot be accounted for as entrapped blood. When glycerol tri[1-14C]oleate and [2-3H]glycerol trioleate were simultaneously injected intracerebrally into suckling rats, both labels appeared in diacylglycerol and the major phospholipids; acyl chain label was incorporated more extensively at early time points, with choline phosphoglycerides being most actively labeled. With [1-14C]fatty acids and [2-3H] glycerol administration, the specific activity of TAG was much greater than that of the more abundant phospholipids. Although direct acyl exchange between TAG and phospholipids was not demonstrated, relationships of TAG to selective mechanisms of phosphoglyceride synthesis were indicated.Abbreviations used TAG triacylglycerol - DAG diacylcerol - HPLC high performance liquid chromatography - CoA coenzyme A - BSA bovine serum albumin - TLC thin layer chromatography - DPM disintegrations per minute - ATP adenosine triphosphate - GLC gas liquid chromatography - PC choline, phosphoglyceride - PE ethanolamine phosphoglyceride - PS serine phosphoglyceride - PI inositol phosphoglyceride  相似文献   

8.
Sodium [1-14C]acetate and [1-14C]stearic acid were readily incorporated into hydrocarbons, secondary alcohols, wax esters, aldehydes, primary alcohols, and fatty acids in young pea leaves (Pisum sativum). Dithioerythritol, dithiothreitol, and mercaptoethanol (but not glutathione and cysteine) severely inhibited the incorporation of labeled acetate into alkanes and secondary alcohols with accumulation of label in wax ester and aldehyde fractions. Detailed radio gas-chromatographic analyses of the fatty acids of both the surface lipid components and internal lipids showed that dithioerythritol and mercaptoethanol specifically inhibited n-hentriacontane (C31) synthesis and caused accumulation of C32 aldehyde, suggesting that the inhibition was at or near the terminal step in alkane biosynthesis, presumably decarboxylation. Trichloroacetate, at a concentration that inhibited C31 alkane synthesis but not the synthesis of alcohols (C26 and C28) specifically inhibited the formation of C32 aldehyde but not that of the C26 or C28 aldehyde. From these results, it is concluded that the C32 aldehyde is derived from the C32 acyl derivative which is the precursor of C31 alkane.  相似文献   

9.
Mixotrophic cultivation can increase microalgae productivity, yet the associated lipid metabolism remains mostly unknown. Stable isotope labeling was used to track assimilation of glycerol into the triacylglyceride (TAG) and membrane lipids of Nannochloropsis salina. In N-replete media, glycerol uptake and 13C incorporation into acyl chains were, respectively, 6-fold and 12-fold higher than in N-deplete conditions. In N-replete cultures, 42% of the carbon in the consumed glycerol was assimilated into lipid acyl chains, mostly in membrane lipids rather than TAG. In N-deplete cultures, only 11% of the limited amount of consumed glycerol was fixed into lipid acyl chains. Labeled lipid-associated glycerol backbones were predominantly 13C3 labeled, suggesting that intact glycerol molecules were directly esterified with fatty acids/polar head groups. However, the presence of singly and doubly labeled lipid-bound glycerol species suggested that some glycerol also went through the central carbon metabolism before forming glycerol-3-phosphate destined for lipid esterification. 13C incorporation was higher in the saturated and monounsaturated than the polyunsaturated acyl chains of TAG, indicating the flux of carbon from glycerol went first to de novo fatty acid synthesis before acyl editing reactions. The results demonstrate that nitrogen availability influences both glycerol consumption and utilization for lipid synthesis in Nannochloropsis, providing novel insights for developing mixotrophic cultivation strategies.  相似文献   

10.
Erucic acid (22:1) was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived (MD) embryo culture system. TAGs accumulating during embryo development exhibited changes in acyl composition similar to those observed in developing zygotic embryos of the same cv, particularly with respect to erucic and eicosenoic acids. However, MD embryos showed a much higher rate of incorporation of 14C-erucoyl moieties into TAGs in vitro than zygotic embryos. Homogenates of early-late cotyledonary stage MD embryos (14-29 days in culture) were assessed for the ability to incorporate 22:1 and 18:1 (oleoyl) moieties into glycerolipids. In the presence of [1-14C]22:1-coenzyme A (CoA) and various acyl acceptors, including glycerol-3-phosphate (G-3-P), radiolabeled erucoyl moieties were rapidly incorporated into the TAG fraction, but virtually excluded from other Kennedy Pathway intermediates as well as complex polar lipids. This pattern of erucoyl incorporation was unchanged during time course experiments or upon incubation of homogenates with chemicals known to inhibit Kennedy Pathway enzymes. In marked contrast, parallel experiments conducted using [1-14C]18:1-CoA and G-3-P indicated that 14C oleoyl moieties were incorporated into lyso-phosphatidic acids, phosphatidic acids, diacylglycerols, and TAGs of the Kennedy Pathway, as well as other complex polar lipids, such as phosphatidylcholines and phosphatidylethanolamines. When supplied with l-[2-3H(N)]G-3-P and [1-14C]22:1-CoA, the radiolabeled TAG pool contained both isotopes, indicating G-3-P to be a true acceptor of erucoyl moieties. Radio-high-performance liquid chromatography, argentation thin-layer chromatography/gas chromatography-mass spectrometry, and stereospecific analyses of radiolabeled TAGs indicated that 22:1 was selectively incorporated into the sn-3 position by a highly active diacylglycerol acyltransferase (DGAT; EC 2.3.1.20), while oleoyl moieties were inserted into the sn-1 and sn-2 positions. In the presence of sn-1,2-dierucin and [1-14C]22:1-CoA, homogenates and microsomal preparations were able to produce radiolabeled trierucin, a TAG not found endogenously in this species. A 105,000g pellet fraction contained 22:1-CoA:DGAT exhibiting the highest specific activity. The rate of 22:1-CoA:DGAT activity in vitro could more than account for the maximal rate of TAG biosynthesis observed in vivo during embryo development. In double label experiments, G-3-P was shown to stimulate the conversion of [3H]phosphatidylcholines to [3H]diacylglycerols, which subsequently acted as acceptors for 14C erucoyl moieties. In vitro, 22:1 moieties did not enter the sn-1 position of TAGs by a postsynthetic modification or transacylation of preformed TAGs.  相似文献   

11.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

12.
Manuel Mancha  Sten Stymne 《Planta》1997,203(1):51-57
Microsomal preparations from developing castor bean (Ricinus communis L.) endosperm catalyzed remodelling of in-situ-formed triacylglycerol (TAG) species. Castor bean microsomal membranes synthesized [14C]TAGs from either glycerol 3-phosphate and [14C]ricinoleoyl-CoA or [14C]glycerol 3-phosphate and ricinoleoyl-CoA. Upon repelleting and subsequent incubation of the microsomes a redistribution occurred of both the [14C]glycerol and [14C]ricinoleoyl moieties of the in-situ-synthesized [14C]TAGs. Radioactivity was transferred from TAG species with three (3HO-TAG) or two (2HO-TAG)ricinoleoyl groups into species with two or one (HO-TAG) ricinoleoyl groups. Mass analysis of the lipid and fatty acid movements in the membranes showed that a net synthesis of TAGs with no, one and two ricinoleoyl groups occurred at the expense of 3HO-TAG and polar lipids. Thus, the non-hydroxylated acyl groups from polar lipids were used in the remodelling of TAGs. In-vivo feeding of [14C]ricinoleic acid to slices of castor bean endosperm demonstrated the presence of two radioactive pools of TAGs one in the oil bodies, which was rich in [14C]3HO-TAG, and one associated with the microsomal membranes, which was dominated by radioactive 1HO-TAG and 2HO-TAG. The microsomal TAG pool was remodelled in vivo in a similar way as in the in-vitro experiments with microsomal membranes. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

13.
The lipid metabolism of the marine brown alga D. membranaceawas investigated using [2–14C]acetate, [1–14C]myristate,[l–I4C]oleate and [l–14C]arachidonate as precursors.On incubation with [2–14C]acetate, 18:1 and 16:0 werethe main products formed by de novo synthesis and incorporatedinto polar lipids. With all the exogenous substrates used, DGTAwas strongly labelled and the subsequent rapid turnover of radioactivitysuggested a key role for this lipid in the redistribution ofacyl chains and most likely also in the biosynthesis of theeukaryotic galacto-lipids produced in the absence of PC. Inthe glycolipids a continuous accumulation of radioactivity wasobserved with all the substrates used. The labelling kineticsof molecular species of MGDG suggested the desaturation of 18:1to 18:4 and of 20:4 (n-6) to 20:5 (n–3) acids on thislipid. Both PG and PE were primary acceptors of de novo synthesizedfatty acids and exogenous [l–14C]oleate, but no evidenceexists for a further processing of acyl chains on these lipids.TAG, although strongly labelled with all exogenous [l–14CJacids,was not labelled when [2–14C]acetate was used as a precursorindicating the flux of endogenous fatty acids to be differentof that of exogenously supplied fatty acids. (Received November 4, 1997; Accepted February 23, 1998)  相似文献   

14.
The seed oil of Thunbergia alata has an unusual fatty acid composition which consists of more than 80 % 16:1Δ6. This fatty acid is produced in the plastid by the action of a Δ6 palmitoyl (16:0)-ACP desaturase. To examine the biosynthesis of triacylglycerol (TAG) containing high concentrations of this unusual monoenoic fatty acid, endosperm dissected from developing T. alata seeds was labeled with [1-14C]-acetate. At early time points (5–15 min), the predominant labeled lipid was PC whereas at later time points (greater than 30 min) TAG became the major labeled lipid. Analysis of the acyl group composition of each lipid revealed that radiolabeled 16:1Δ6 was highest at early time points in PC while at later time points, it was found to be highest in TAG. Further analysis of the distribution of labeled acyl groups within PC indicated that 16:1Δ6 at the sn-2 position comprised the majority (55–78 %) of total labeled acyl groups whereas 16:1Δ6 at the sn-1 position constituted only a small fraction (12–15 %) of the total labeled acyl groups. In contrast, unlabeled PC contained lower amounts of 16:1Δ6 (16 %) at the sn-2 position. These results are consistent with previous studies suggesting a flux of novel monoenoic acids through PC during TAG biosynthesis, and furthermore imply a stereospecific flux through the sn-2 position of PC.  相似文献   

15.
Biosynthesis of very long chain (>C18) fatty acids (VLCFAs) and the pathway for their incorporation into acyl lipids was studied in microspore-derived (MD) and zygotic embryos of Brassica napus L. cv Reston. In the presence of [1-14C]oleoyl-coenzyme A or [1-14C] eicosenoyl-coenzyme A, malonyl-coenzyme A, and reducing equivalents, maximal in vitro elongation activity was expressed in protein preparations from early-mid cotyledonary stage MD embryos (17-20 days in culture), when endogenous eicosenoic (20:1) and erucic (22:1) acids were just beginning to accumulate (approximately 1.5 milligrams per gram dry weight). The biosynthesis of VLCFAs and their incorporation into glycerolipids in vitro in the MD embryo system occurred at rates comparable to those measured in developing zygotic Reston embryos at about 20 days postanthesis. When glycerol-3-phosphate was supplied as acyl acceptor in time-course experiments using homogenates prepared from 18-day MD embryos, newly synthesized [14C]20:1 and [14C]22:1 were incorporated primarily into triacylglycerols (TAGs) and, to a lesser extent, into lyso-phosphatidic/phosphatidic acids, diacylglycerols, and phosphatidylcholines as well as the acyl-coenzyme A and free fatty acid pools. [14C]24:1 was not detected in any acyl lipid. Stereospecific analyses of the radiolabeled TAGs indicated that [14C]20:1 and [14C]22:1 moieties were esterified predominantly at the sn-3 position, but were also found at the sn-1 position. [14C]20:1, but not [14C]22:1, was detected at the sn-2 position. Similar patterns of 14C-labeled VLCFA distribution were obtained in experiments conducted using a 15,000g pellet fraction from 18-day MD embryos. All trends observed in the formation of TAGs containing VLCFAs in the Reston MD embryo system were also confirmed in studies of zygotic embryos of the same cultivar. The data support the biosynthesis of 20:1 and then 22:1 via successive condensations of malonyl-coenzyme A with oleoyl-coenzyme A and, for the first time in B. napus, demonstrate the incorporation of newly synthesized VLCFAs into TAGs via the Kennedy pathway.  相似文献   

16.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

17.
Microsomal monoacyglycerol acyltransferase is a developmentally expressed enzyme that catalyzes the synthesis of sn-1,2-diacylglycerol from sn-2-monoacylglycerol and palmitoyl-CoA. The activity is present in liver from fetal and suckling rats but is absent in the adult. In order to obtain a stable permanent cell line that expresses this activity, Fao rat hepatoma cells and hepatocytes from 8-day-old baby rats were hybridized and clones were selected. Two hybrids (HA1 and HA7) expressed monoacylglycerol acyltransferase activity. Like fetal hepatocytes, but unlike hepatocytes from postnatal rats, the HA cells had high rates of [14C]acetate incorporation into glycerolipids, cholesterol, and cholesteryl esters, and they secreted triacylglycerol into the media. Monoacylglycerol acyltransferase specific activity increased 2.5-fold as the cells divided in culture, suggesting growth-dependent regulation. The specific activities of glycerol-P acyltransferase, the committed step of the microsomal pathway of glycerolipid synthesis, and diacylglycerol acyltransferase, the activity unique to triacylglycerol biosynthesis, were comparable to the levels of the corresponding activities in fetal hepatocytes. Addition of insulin or dexamethasone to the media increased the incorporation of [14C]oleate into triacyglycerol about 1.7-fold within 2 h, but had little effect on [14C]oleate incorporation into phospholipid. These hormonally responsive rat-hepatoma/hepatocyte hybrids reflect the fetal stage of hepatocyte development in five major aspects of lipid metabolism: sterol, fatty acid, and triacylglycerol biosynthesis, glycerolipid secretion, and the presence of the developmentally expressed monoacylglycerol pathway.  相似文献   

18.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

19.
Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.  相似文献   

20.
Neurospora crassa membrane preparations incorporated mannose from GDP-mannose-[14C] in the presence of Mg2+ into a polyprenol lipid and side chains of protein acceptor(s), which are labile on hydrolysis in weak base. The addition of Mn2+ to the reaction mixtures does not affect mannosyl lipid synthesis but it stimulates the transfer of mannose to larger oligosaccharide chains resistant to β-elimination and the transfer of a second mannosyl unit to form an O-glycosidically linked mannobiosyl side chain. Incubation of particulate preparations with polyprenol-mannose-[14C] in the presence of Mg2+ and Mn2+ also results in the transfer of a single mannose to the protein. When non-radioactive GDP-mannose is added to this reaction mixture, however, β-elimination yields mannobiose. The mannobiose is labeled in the reducing sugar only. These results indicate that the first mannose of this mannobiosyl side chain is transferred via a lipid intermediate, but the second mannose is transferred directly from GDP-mannose. In the presence of Mg2+ and Mn2+, mannose apparently is also transferred from polyprenol-mannose-[14C] to side chains which are resistant to hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号