首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preservation of pollinator habitat on croplands in the form of hedgerows, wildflower strips, and natural and semi-natural areas can help maintain and enhance wild bee populations in agricultural landscapes. However, there have been few comparisons of the effectiveness of different types of field-margin pollinator habitat in maintaining bee diversity and pollination of the focal crops. We compared wild bee abundance, species richness and community composition between strawberry crops bordered by hedgerows, and those bordered by larger expanses of natural land (forests). Strawberry is an ideal crop in which to investigate pollinator export from field margins as the rows are covered with straw, which reduces habitat for ground-nesting bees within the crop; thus, most wild pollinators need to enter the crop from the margins. We sampled bees in six strawberry fields with hedgerow margins and six strawberry fields with forested margins of at least 200 m in length, using a paired design. We examined strawberry pollen deposition at regular intervals into the fields, and the magnitude of pollinator export from the field margins towards the centre of the crops. We found that bees as a group were no more species-rich or abundant in crops bordered by forests than in crops bordered by hedgerows, although large-bodied bees were more abundant in the former than the latter. Regardless of field-margin type, we found that small wild bee abundance declined significantly from the edge to the centre of the crop, but honey bee (Apis mellifera L.) and large-bodied bee abundance did not. Strawberry pollen deposition also did not decline with distance into the crop. Although previous work indicates that small wild bees are more effective (yield-increasing) pollinators of strawberry on a per-visit basis, their limited foraging ranges suggest they may only pollinate areas near the crop margins, given typical field sizes in our area.  相似文献   

2.
Pollination service in agricultural crops increases significantly with pollinator diversity and wild pollinator abundance. Differences in the foraging behaviour of pollinating insects are one of the reasons why pollinator diversity and abundance enhances crop pollination. Here, we focused on the foraging behaviour of honey bees and bumble bees in sweet cherry orchards. In addition, we studied the influence of bee diversity and abundance on the foraging behaviour of honey bees and bumble bees. Honey bees were found to visit fewer flowers than bumble bees. Bumble bees also showed a higher probability of changing trees between rows than honey bees. Both visitation rate and probability of row changes of honey bees increased with bumble bee diversity and with bumble bee abundance. We also found that the probability of row changes of honey bees increased with increasing bumble bee abundance. These effects of bumble bee richness and abundance on the pollination behaviour of honey bees can improve the pollination performance of honey bees in crops that depend on cross pollination. Our results highlight the higher pollination performance of bumble bees and the facilitative effect of wild pollinators to crop pollination.  相似文献   

3.
Wildflower strips are a management practice increasingly used to provide floral resources to wild bees in agroecosystems. Yet, despite known spatiotemporal variation in wild bee communities, the degree to which different wildflower strip species consistently support wild bee communities is poorly understood. Additionally, whether such consistency is related to the functional roles wildflower species play (e.g., in supporting diverse, rare, or unique suites of bee species) has not been considered. Over three years and on four diversified farms, we evaluated spatiotemporal variation in wild bee communities and bee-flower interactions in wildflower strips to better understand the roles of flower strip species in supporting bees. We documented spatiotemporal variation in the abundance, richness, and composition of local wild bee communities. Certain wildflower species consistently supported the highest richness of wild bees across years. These wildflower species were regularly core members of the bee-flower interaction network, visited by both generalist and specialist bees. By contrast, wildflower species supporting the most unique suites of bees were variable in this role among farms. In order to select plant species for wildflower strips that consistently support a high diversity of wild bee communities within farm landscapes, it is useful to consider several different functional roles that plants may play. Whereas a handful of wildflower species may be visited by the majority of local wild bee species, achieving support for the remaining, and perhaps rarer, bee species will require planting additional flower species, which may appear redundant until the spatiotemporal variation in wild bee communities is more thoroughly considered. This functional approach to selecting wildflower species for bee conservation efforts is important for making practical recommendations to land managers and for guiding best management practices in different regions and with diverse management goals.  相似文献   

4.
Native bees provide insurance against ongoing honey bee losses   总被引:2,自引:0,他引:2  
One of the values of biodiversity is that it may provide 'biological insurance' for services currently rendered by domesticated species or technology. We used crop pollination as a model system, and investigated whether the loss of a domesticated pollinator (the honey bee) could be compensated for by native, wild bee species. We measured pollination provided to watermelon crops at 23 farms in New Jersey and Pennsylvania, USA, and used a simulation model to separate the pollen provided by honey bees and native bees. Simulation results predict that native bees alone provide sufficient pollination at > 90% of the farms studied. Furthermore, empirical total pollen deposition at flowers was strongly, significantly correlated with native bee visitation but not with honey bee visitation. The honey bee is currently undergoing extensive die-offs because of Colony Collapse Disorder. We predict that in our region native bees will buffer potential declines in agricultural production because of honey bee losses.  相似文献   

5.
Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination‐dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.  相似文献   

6.
Animal-mediated pollination is essential for the production and quality of fruits and seeds of many crops consumed by humans. However, crop pollination services might be compromised when wild pollinators are scarce. Managed pollinators are commonly used in crops to supplement such services with the assumption that they will enhance crop yield. However, information on the spatiotemporal pollinator-dependence of crops is still limited. We assessed the contribution of commercial bumble bee colonies compared to the available pollinator community on strawberry (‘Fortuna’ variety) flower visitation and strawberry quality across a landscape gradient of agricultural intensification (i.e. polytunnel berry crop cover). We used colonies of bumble bees in winter and in spring, i.e. when few and most wild pollinators are in their flight period, respectively. The placement of colonies increased visits of bumble bees to strawberry flowers, especially in winter. The use of bumble bee colonies did not affect flower visitation by other insects, mainly honey bees, hoverflies and other Diptera. Flower visitation by both honey bees and wild insects did not vary between seasons and was unrelated to the landscape gradient of berry crop cover. Strawberries were of the highest quality (i.e. weight) when insect-mediated pollination was allowed, and their quality was positively related to wild flower visitors in winter but not in spring. However, increased visits to strawberry flowers by managed bumble bees and honey bees had no effect on strawberry weight. Our results suggest that the pollination services producing high quality strawberry fruits are provided by the flower visitor community present in the study region without the need to use managed bumble bees.  相似文献   

7.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

8.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

9.
Several agri-environment schemes aim to improve pollinator diversity and abundance, including the sowing of wildflower areas. These seed mixes are often either low in floral diversity and target few pollinator species (mainly social bees), or high in floral diversity but with limited evidence of good establishment of the component species. In order to support a greater diversity of wild bees in farmland, we need more diverse seed mixes, containing species shown to support a wide diversity of insect pollinators, with good establishment and long flowering periods. Here we trialled two typical seed mixes, a low-diversity Fabaceae-heavy mix (FAB) and a more diverse wildflower mix (WF), against two novel wildflower mixes, one based on literature sources (LT), and one based on first-hand surveys of pollinator attraction to flowers growing on a wildflower farm (WB). Both new mixes were focussed on plants attractive to wild bee species. Replicated field plots were set up on two farms and monitored over three years. Our novel wildflower mixes had higher floral diversity and abundance than the FAB mix, and began flowering earlier, reaching their floral peak before the FAB mix, potentially providing forage for a broader range of pollinators or those with earlier flight seasons. The high floral abundance in LT and WB was driven by annuals in the first year, and then multiple perennials in the second and third year. We identified five perennials from four families (Daucus carota, Leucanthemum vulgare, Geranium pyrenaicum, Lotus corniculatus and Trifolium hybridum) that established well on both farms, are known to be attractive to a diversity of bee species, and thus could be considered as providing a more taxonomically diverse base for creating future mixes. However, the mixes provided few floral resources in April (needed by early-flying wild bees), and more research is required in this area.  相似文献   

10.
Modeling pollination ecosystem services requires a spatially explicit, process‐based approach because they depend on both the behavioral responses of pollinators to the amount and spatial arrangement of habitat and on the within‐ and between‐season dynamics of pollinator populations in response to land use. We describe a novel pollinator model predicting flower visitation rates by wild central‐place foragers (e.g., nesting bees) in spatially explicit landscapes. The model goes beyond existing approaches by: (1) integrating preferential use of more rewarding floral and nesting resources; (2) considering population growth over time; (3) allowing different dispersal distances for workers and reproductives; (4) providing visitation rates for use in crop pollination models. We use the model to estimate the effect of establishing grassy field margins offering nesting resources and a low quantity of flower resources, and/or late‐flowering flower strips offering no nesting resources but abundant flowers, on bumble bee populations and visitation rates to flowers in landscapes that differ in amounts of linear seminatural habitats and early mass‐flowering crops. Flower strips were three times more effective in increasing pollinator populations and visitation rates than field margins, and this effect increased over time. Late‐blooming flower strips increased early‐season visitation rates, but decreased visitation rates in other late‐season flowers. Increases in population size over time in response to flower strips and amounts of linear seminatural habitats reduced this apparent competition for pollinators. Our spatially explicit, process‐based model generates emergent patterns reflecting empirical observations, such that adding flower resources may have contrasting short‐ and long‐term effects due to apparent competition for pollinators and pollinator population size increase. It allows exploring these effects and comparing effect sizes in ways not possible with other existing models. Future applications include species comparisons, analysis of the sensitivity of predictions to life‐history traits, as well as large‐scale management intervention and policy assessment.  相似文献   

11.
Landscape effects on crop pollination services: are there general patterns?   总被引:2,自引:0,他引:2  
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies – representing 16 crops on five continents – to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set – variables that directly affect yields – is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.  相似文献   

12.
Evidence for pollinator declines has led to concern that inadequate pollination services may limit crop yields. The global trade in commercial bumble bee (Bombus spp.) colonies provides pollination services for both glasshouse and open-field crops. For example, in the United Kingdom, commercial colonies of nonnative subspecies of the bumble bee Bombus terrestris L. imported from mainland Europe are widely used for the pollination of raspberries, Rubus idaeus L. The extent to which these commercial colonies supplement the services provided by wild pollinators has not been formally quantified and the impact of commercial bumble bees on native bees visiting the crop is unknown. Here, the impacts of allowing commercially available bumble bee colonies to forage on raspberry canes are assessed in terms of the yield of marketable fruit produced and the pollinator communities found foraging on raspberry flowers. No differences were found in the abundance, diversity, or composition of social bee species observed visiting raspberry flowers when commercial bumble bees were deployed compared with when they were absent. However, weight of marketable raspberries produced increased when commercial bees were present, indicating that wild pollinator services alone are inadequate for attaining maximum yields. The findings of the study suggests that proportional yield increases associated with deployment of commercial colonies may be small, but that nevertheless, investment in commercial colonies for raspberry pollination could produce very significant increases in net profit for the grower. Given potential environmental risks associated with the importation of nonnative bumble bees, the development of alternative solutions to the pollination deficit in raspberry crops in the United Kingdom may be beneficial.  相似文献   

13.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

14.
Biodiversity buffers pollination from changes in environmental conditions   总被引:1,自引:0,他引:1  
A hypothesized underlying principle of the diversity‐functioning relationship is that functional groups respond differently to environmental change. Over 3 years, we investigated how pollinator diversity contributes to the magnitude of pollination service through spatial complementarity and differential response to high winds in California almond orchards. We found honey bees preferentially visited the top sections of the tree. Where wild pollinators were present, they showed spatial complementarity to honey bees and visited the bottom tree sections more frequently. As wind speed increased, honey bees' spatial preference shifted toward the bottom tree sections. In high winds (>2.5 m s?1), orchards with low pollinator diversity (honey bees only) received almost no flower visits. In orchards with high pollinator diversity, visitation decreased to a lesser extent as wild bee visitation was unaffected by high winds. Our results demonstrate how spatial complementarity in diverse communities can help buffer pollination services to environmental changes like wind speed.  相似文献   

15.
Understanding the relative contributions of wild and managed pollinators, and the functional contributions made by a diverse pollinator community, is essential to the maintenance of yields in the 75% of our crops that benefit from insect pollination. We describe a field study and pollinator exclusion experiments conducted on two soft-fruit crops in a system with both wild and managed pollinators. We test whether fruit quality and quantity is limited by pollination, and whether different pollinating insects respond differently to varying weather conditions. Both strawberries and raspberries produced fewer marketable fruits when insects were excluded, demonstrating dependence on insect pollinators. Raspberries had a short flowering season which coincided with peak abundance of bees, and attracted many bees per flower. In contrast, strawberries had a much longer flowering season and appeared to be much less attractive to pollinators, so that ensuring adequate pollination is likely to be more challenging. The proportion of high-quality strawberries was positively related to pollinator abundance, suggesting that yield was limited by inadequate pollination on some farms. The relative abundance of different pollinator taxa visiting strawberries changed markedly through the season, demonstrating seasonal complementarity. Insect visitors responded differently to changing weather conditions suggesting that diversity can reduce the risk of pollination service shortfalls. For example, flies visited the crop flowers in poor weather and at the end of the flowering season when other pollinators were scarce, and so may provide a unique functional contribution. Understanding how differences between pollinator groups can enhance pollination services to crops strengthens the case for multiple species management. We provide evidence for the link between increased diversity and function in real crop systems, highlighting the risks of replacing all pollinators with managed alternatives.  相似文献   

16.
Fire in Mediterranean-type ecosystems produces catastrophic changes in plant-pollinator systems; the recovery of which has been studied by comparing an unburnt mature forest habitat with that of an adjacent recently burnt area (eight years post-fire). The composition, visitation profiles, and effectiveness of the taxonomically diverse pollinator assemblages found on a core nectar providing species ( Satureja thymbra : Lamiaceae) were examined in these two contrasting habitats. S. thymbra in the freshly burnt area had low nectar standing crop and relatively less diverse bee community than an unburnt area which had twice the nectar standing crop and a higher bee diversity and abundance. Both sites supported bee assemblages dominated by the non-native bumblebee Bombus terrestris . Spatio-temporal heterogeneity of nectar standing crops and microclimatic conditions were sufficient to explain the form and magnitude of the diurnal foraging profiles at each site in relation to species specific foraging and flight abilities. B. terrestris, Apis mellifera and native solitary bees were the three primary guilds visiting S. thymbra and varied in the efficiency with which they delivered conspecific pollen grains to receptive stigmas. A pollinator effectiveness index for these three guilds was calculated based on floral visitation rates and pollen delivery efficiency and reflected the actual levels of effectiveness of each guild within and across the two habitat types. There was no overall inter-community difference in pollination effectiveness as the bee assemblages in both habitats were sufficient to produce maximum fruit set in S. thymbra, though the relative contribution of each guild varied intra-communally. Pollen limitation was not found to occur in either habitat.  相似文献   

17.
In Uganda, information on visitation frequency of pollinator species visiting coffee flowers is absent, although such information is critical for the stability of coffee yield through the enhancement of pollination services. This study was conducted to understand the role played by local and environmental factors on the visitation intensity of coffee flowers by different bee species. Stepwise multiple regressions were used to investigate the effects of light intensity, distance to forest, foraging time of the day, coffee blooming season and abundance of coffee floral resources on the flower visitation frequency of different bee species. Results indicated contrasting responses of different bee species. The most important factors for social bees included forest distance, light intensity and the time of the day, whereas most determinant factors for solitary bee species were the length of the flowering season and the abundance of coffee floral resources. There is a need for developing habitat and landscape management strategies for the conservation of frequent native species in the vicinity of coffee fields to increase the delivery of pollination services to coffee. It is recommended to farmers to grow their coffee farms in the adjacent of forest habitats and related semi‐natural habitats to receive high bee visitations.  相似文献   

18.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

19.
Pollination is an essential ecosystem service for pollinator-dependent crops and plant communities. Apis mellifera L. is by far the most commonly used species to obtain this service in agriculture. However, there is growing evidence of the importance for crop yields of the service provided by wild bees and non-bee insect pollinators. Establishing flower resources in agricultural landscapes is a management practice that can increase insect pollinator populations and improve crop yields. We established perennial native flower strips (NFS) in four avocado orchards in central Chile during autumn 2017. We monitored flower visitors and counted newly formed fruits in avocados near and far from NFS in spring 2019, to assess flower visitor groups, flower visitation rates and fruit numbers. Only A. mellifera visited avocado flowers within bees, whereas both the managed A. mellifera and wild bees were the main visitors to the NFS. NFS increased visitation rates to adjacent avocado of flies, and with a trend for the sum of all non-managed flower visitors (i.e. excluding A. mellifera). However, there were no differences in the rates of A. mellifera visitation to avocados near and far from NFS. Avocado fruit numbers were higher among avocados near NFS than among those farther away. This difference could be due to better pollination by the increased visits to avocado flowers by flies or other wild insects. Therefore, NFS could contribute to crop fruit number, as well as conservation of native flora, wild bees and non-bee pollinators on fruit farms in the “Central Chile” biodiversity hotspot.  相似文献   

20.
  1. Crop pollination generally increases with pollinator diversity and wild pollinator visitation. To optimize crop pollination, it is necessary to investigate the pollination contribution of different pollinator species. In the present study, we examined this contribution of honey bees and non‐Apis bees (bumble bees, mason bees and other solitary bees) in sweet cherry.
  2. We assessed the pollination efficiency (fruit set of flowers receiving only one visit) and foraging behaviour (flower visitation rate, probability of tree change, probability of row change and contact with the stigma) of honey bees and different types of non‐Apis bees.
  3. Single visit pollination efficiency on sweet cherry was higher for both mason bees and solitary bees compared with bumble bees and honey bees. The different measures of foraging behaviour were variable among non‐Apis bees and honey bees. Adding to their high single visit efficiency, mason bees also visited significantly more flower per minute, and they had a high probability of tree change and a high probability to contact the stigma.
  4. The results of the present study highlight the higher pollination performance of solitary bees and especially mason bees compared with bumble bees and honey bees. Management to support species with high pollination efficiency and effective foraging behaviour will promote crop pollination.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号