首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bioassay‐guided phytochemical analysis of the ethanolic extract of Grindelia argentina Deble & Oliveira ‐Deble (Asteraceae) allowed the isolation of a known flavone, hispidulin, and three new oleanane‐type saponins, 3‐Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester ( 2 ), 3‐Oβ‐D ‐glucopyranosyl‐2β,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester, ( 3 ) and 3‐Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐2β,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester ( 4 ), named grindeliosides A–C, respectively. Their structures were determined by extensive 1D‐ and 2D‐NMR experiments along with mass spectrometry and chemical evidence. The isolated compounds were evaluated for their inhibitory activities against LPS/IFN‐γ‐induced NO production in RAW 264.7 macrophages and for their cytotoxic activities against the human leukemic cell line CCRF‐CEM and MRC‐5 lung fibroblasts. Hispidulin markedly reduced LPS/IFN‐γ‐induced NO production (IC50 51.4 μM ), while grindeliosides A–C were found to be cytotoxic, with grindelioside C being the most active against both CCRF‐CEM (IC50 4.2±0.1 μM ) and MRC‐5 (IC50 4.5±0.1 μM ) cell lines.  相似文献   

2.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

3.
Saponins are amphiphilic glycoconjugates which give soap‐like foams in H2O. A new triterpenoid saponin, simenoside A ( 1 ), based on gypsogenin aglycone, and the known saponin 2 were isolated from Gypsophila simonii Hub.‐Mor. The structure of the new saponin was elucidated as 3‐Oβ‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosylgypsogenin 28‐Oβ‐D ‐glucopyranosyl‐(1→3)[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl‐(1→4)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl ester on the basis of extensive spectral analyses and chemical evidence. Saponins 1 and 2 were isolated from G. simonii for the first time.  相似文献   

4.
Three new triterpene glucosides, named congmuyenosides C–E ( 1 – 3 , resp.), along with four known ones, were isolated from an EtOH extract of Aralia elata (Miq .) Seem . leaves. The structures of the new compounds were identified as 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}caulophyllogenin ( 1 ), 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}hederagenin 28‐Oβ‐D ‐glucopyranosyl ester ( 2 ), 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}echinocystic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 3 ) on the basis of spectral analyses, including MS, 1H‐NMR, 13C‐NMR, DEPT, HSQC, HMBC, NOESY, and HSQC‐TOCSY experiments. All isolates obtained were evaluated for their cytotoxic activities against three human tumor cell lines (HepG2, SKOV3, and A549). Compound 3 showed significant cytotoxicity against A549 cell line (IC50 9.9±1.5 μM ).  相似文献   

5.
Three new nortriterpene saponins having inhibitory effects on the growth of cultured tumor cells, named pfaffosides D, E and F, have been isolated from Pfaffia paniculata. Their structures have been established as 3β-O-[β-d-xylopyranosyl-(1 → 2)-β-d-(6-O-n-butyl) glucuronopyranosyl]-pfaffic acid-(28 → 1)-β-d-glucopyranosyl ester, 3β-O-[β-d-xylopyranosyl-(1 → 2)-β-d(6-O-methyl)glucuronopyranosyl]-pfaffic acid-(28 → 1)-β-d glucopyranosyl ester and 3β-O[β-d-glucuronopyranosyl]-pfaffic acid respectively, based on their chemical and spectroscopic properties  相似文献   

6.
Three new oleanane‐type glycosides, 1 – 3 , were isolated from the whole plant of Tremastelma palaestinum (L.) Janchen, along with eight known triterpene glycosides. The structures of the new compounds were established as 3‐O‐[β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]hederagenin ( 1 ), 3‐O‐[β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]hederagenin 28‐Oβ‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranosyl ester ( 2 ), and 3‐O‐[α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]oleanolic acid 28‐Oβ‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranosyl ester ( 3 ) by using 1D‐ and 2D‐NMR techniques and mass spectrometry. This is the first report on the phytochemical investigation of a species belonging to Tremastelma genus.  相似文献   

7.
From the whole plant of Astragalus halicacabus (Sect. Halicacabus), a new cycloartane‐type glycoside, (20R,24S)‐3‐O‐[α‐L ‐arabinopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl]‐20,24‐epoxy‐16‐Oβ‐D ‐glucopyranosyl‐3β,6α,16β,25‐tetrahydroxycycloartane, and a new glycoside, 3‐O‐[β‐D ‐apiofuranosyl‐(1→2)‐β‐D ‐glucopyranosyl]maltol were isolated together with seven known cycloartane‐type glycosides, i.e., cyclocanthoside D, askendosides D, F, and G, cyclosieversioside G, cyclostipuloside A, elongatoside, and a known maltol glucoside, 3‐Oβ‐D ‐glucopyranosylmaltol. The structures were elucidated by means of high‐resolution mass spectrometry, and extensive 1D‐ and 2D‐NMR spectroscopic analysis. This is the first phytochemical work on A. halicacabus, and a maltol glycoside was encountered for the first time in the Leguminosae family.  相似文献   

8.
Two new flavonoid glycosides, together with twelve known compounds including seven flavonoids and five triterpenoids were isolated from the whole plant Atractylis flava Desf. The structures of new compounds have been elucidated as 6-hydroxykaempferol 6-methyl ether 7-O-β-glucopyranuronoside (1) and isorhamnetin 3-O-[(6″′-O-E-feruloyl)-β-d-glucopyranosyl-(1  2)]-β-d-galactopyranoside (2) named Atraflavoside A and B successively, on the basis of physical and spectroscopic analysis, including 1D and 2D NMR (1H, 13C, COSY, TOCSY, HSQC, HMBC and NOESY) and mass spectrometry (HRESIMS) whereas those of the known compounds (314) were established by spectral comparison with those published in the literature.  相似文献   

9.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

10.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

11.
《Phytochemistry》1987,26(4):1185-1188
In continuation of our chemosystematic study of Stachys (Labiatae) we have isolated the previously reported isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (1) and 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (4) and four new allose-containing flavonoid glycosides from S. anisochila. The new glycosides are hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranside] (6) as well as the three corresponding diacetyl analogues of 1, 4 and 6, isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside], 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside] and hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside]. Extensive two-dimensional NMR studies (proton-carbon correlations, COSY experiments) allowed assignment of all 1H NMR sugar signals and a correction of the 13C NMR signal assignments for C-2 and C-3 of the allose.  相似文献   

12.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   

13.
Withanolide D, 7β-acetoxy-withanolide D and two new withanolide glycosides, named dunawithanines A and B, were isolated from Dunalia australis. From physical data and chemical transformations, the structures of the new compounds were determined as (20R,22R-O(3)-[2′,3′-di-O-(β-D-glucopyranosyl)-β-D-glucopyranosyl]-3β,20-dihydroxy-1α-acetoxy-witha-5,24-dienolide and the corresponding O(3)-[β-D-glucopyranosyl(1′ → x)-β-D- glucopyranosyl] compound, representing the first withanolide glycosides found in the plant kingdom.  相似文献   

14.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

15.
Four triterpenoid saponins (14) were isolated from the aerial parts of Trifolium argutum Sol. (sharp-tooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (1) and 3-O-[β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (2). The occurrence of 3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (melilotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within Trifolium species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 μM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of L. sativa at the higher dose, with IC50 (254.1 μM) lower than that of Logran® (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins.  相似文献   

16.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

17.
Two previously undescribed flavonol tetraglycosides, isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (1) and isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside (2), along with nine known compounds including seven flavonoids and two lignans, were isolated from the leaves of Opilia amentacea Roxb (Opiliaceae). Their structures were established on the basis of spectroscopic analysis. The DPPH radical scavenging activity of compounds 111 was evaluated. In addition, all compounds were evaluated for their tyrosinase inhibitions by using in vitro mushroom tyrosinase assay. Only 5,5-dimethoxylariciresinol-4-O-β-d-glucopyranoside (10) and eleutheroside E1 (11) exhibited significant tyrosinase inhibition (IC50 42.1 and 28 μM, respectively) and DPPH radical scavenging activity (IC50 85.1 and 42.1 μM, respectively) compared with the positive controls.  相似文献   

18.
To investigate saponins from the roots of Pulsatilla cernua (Thunb.) Bercht. et Opiz., two new compounds together with five known trlterpenold saponins were isolated. The structures of the two new trlterpenoid saponins, named cernuasides A and B, were elucidated as 3-O-[β-D-xylopyranosyl(1-)2)]-[α-L-rhamnopyranosyl(1-)4)]-α-L- arablnopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 1) and 3-O-[α-L-arabinopyranosyl(1→)3)]- [α-L-rhamnopyranosyl (1→)2)]-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 2) by 1D, 2D-NMR techniques, ESIMS analysis, as well as chemical methods.  相似文献   

19.
Gentiana rhodantha Franch. ex Hemsl. (Gentianaceae), an annual herb widely distributed in the southwest of China, has been medicinally used for the treatment of inflammation, cholecystitis, and tuberculosis by the local people of its growing areas. Chemical investigation on the whole plants led to the identification of eight new phenolic compounds, rhodanthenones A–D ( 1 – 4 , resp.), apigenin 7‐O‐glucopyranosyl‐(1→3)‐glucopyranosyl‐(1→3)‐glucopyranoside ( 5 ), 1,2‐dihydroxy‐4‐methoxybenzene 1‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 6 ), 1,2‐dihydroxy‐4,6‐dimethoxybenzene 1‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 7 ), and methyl 2‐Oβ‐D ‐glucopyranosyl‐2,4,6‐trihydroxybenzoate ( 8 ), together with eleven known compounds, 9 – 19 . Their structures were determined on the basis of detailed spectroscopic analyses and chemical methods. Acetylcholinesterase (AChE) inhibition and cytotoxicity tests against five human cancer cell lines showed that only rhodanthenone D ( 4 ) and mangiferin ( 12 ) exhibited 18.4 and 13.4% of AChE inhibitory effects at a concentration of 10−4 M , respectively, while compounds 1 – 5 and the known xanthones lancerin ( 11 ), mangiferin ( 12 ), and neomangiferin ( 13 ) displayed no cytotoxicity at a concentration of 40 μM .  相似文献   

20.
Two new tridesmosidic cycloartane-type triterpene glycosides (1 and 2) were isolated from the methanolic extract of the roots of Astragalus brachycalyx FISCHER (A. brachycalyx) along with ten (3–12) known cycloartane-type triterpene glycosides. Structures of the new compounds were established as 3-O-β-d-xylopyranosyl-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1→2)-β-d-xylopyranosyl]-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (2), by using 1D and 2D-NMR techniques and mass spectrometry.In vitro immunomodulatory effects and hemolytic activities of the new saponins (1 and 2) and acetylated form of 1 (1a) were studied together with the BuOH and MeOH extracts of Astragalus brachycalyx. The results have proven that tridesmosidic Astragalus cycloartanes are noteworthy immunomodulatory compounds via induction of cytokine production, namely IL-2 and IFN-γ. The test compounds also resulted slight hemolysis at very high doses substantiating a safer profile compared to the positive control QS-21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号